Note
0.0
(0)
Rate it
Take a practice test
Chat with Kai
undefined Flashcards
0 Cards
0.0
(0)
Explore Top Notes
Position, acceleration, and velocity
Note
Studied by 68 people
5.0
(1)
4.8 E-commerce
Note
Studied by 13 people
5.0
(1)
Chapter 3- Colonial Ways of Life
Note
Studied by 17 people
5.0
(1)
Chapter 9: Heat and States of Matter
Note
Studied by 28 people
5.0
(3)
12-02: Working with Polynomials
Note
Studied by 20 people
5.0
(1)
Chapter 5: Chemical Energetics
Note
Studied by 10 people
5.0
(1)
Home
Exam Preparation Flashcards
Exam Preparation Flashcards
Exam Question Notes
2018 Exam Q5
Medium 1
: Permittivity \epsilon
1, Permeability \mu
1 = \mu
0, Epsilon relative \epsilon
{r1} = 1.
Medium 2
: Permittivity \epsilon
2, Permeability \mu
2 = \mu
0, Epsilon relative \epsilon
{r2} .
Interface at y = 0.
Incident wave
: Propagates in the \hat{i} direction, Electric field \tilde{E
i}, Magnetic field \tilde{H
i}.
Transmitted wave
: Propagates in the \hat{t} direction, Electric field \tilde{E
t}, Magnetic field \tilde{H
t}.
Reflected wave
: Propagates in the \hat{r} direction, Electric field \tilde{E
r}, Magnetic field \tilde{H
r}.
Incident electric field: \tilde{E
i} = \hat{x} E
{io} \cos(2\pi \times 10^9 t - \pi y) V/m at y=0, where E_{io} = 40 V/m.
The incident electric field is polarized in the x-direction and propagates along y-direction.
The magnitude of the incident electric field is 40 V/m.
Calculations and Parameters
Intrinsic impedance of medium 1
: \eta
1 = \sqrt{\frac{\mu
1}{\epsilon
1}} = \sqrt{\frac{\mu
0}{\epsilon
0 \epsilon
{r1}}} = \frac{120\pi}{\sqrt{1}} = 120\pi = 377 \Omega.
Wave number in medium 1
: k
1 = \omega \sqrt{\mu
1 \epsilon
1} = 2\pi \times 10^9 \sqrt{\mu
0 \epsilon
0 \epsilon
{r1}} = \frac{2\pi \times 10^9}{3 \times 10^8} = \frac{20\pi}{3} rad/m.
Incident Magnetic Field
: \tilde{H
i} = \frac{1}{\eta
i} \hat{k} \times \tilde{E} = \frac{1}{\eta
1} \hat{y} \times \tilde{E
i} = \frac{1}{120\pi} \hat{z} \cos(2\pi \times 10^9 t - \pi y) A/m.
Reflection Coefficient
Reflection coefficient: \Gamma = \frac{\eta
2 - \eta
1}{\eta
2 + \eta
1}.
Given: \Gamma = \frac{60\pi - 120\pi}{60\pi + 120\pi} = \frac{-60\pi}{180\pi} = -\frac{1}{3} = -0.33.
Reflected Electric Field
: \tilde{E
r}(y=0) = \Gamma \tilde{E
i}(y=0) = -0.2 \hat{x} \cos(2\pi \times 10^9 t + \pi y).
Intrinsic impedance of medium 2
: \eta
2 = \sqrt{\frac{\mu
2}{\epsilon
2}} = \frac{120\pi}{\sqrt{\epsilon
{r2}}} = 60\pi \Omega \implies \epsilon_{r2} = 4.
Transmission Coefficient
Transmission coefficient: \tau = 1 + \Gamma = 1 + (-0.33) = 0.67.
Transmitted Electric Field
: \tilde{E
t}(y=0) = \tau \tilde{E
i}(y=0) = 0.67 \hat{x} \cos(2\pi \times 10^9 t - 2\pi y).
Wave number in medium 2
: k
2 = \omega \sqrt{\mu
2 \epsilon
2} = 2 \pi \times 10^9 \sqrt{\mu
0 \epsilon
0\epsilon
{r2}} = \frac{2\pi \times 10^9 \times 2}{3 \times 10^8} = \frac{40 \pi}{3} rad/m.
Transmitted Electric Field
: \tilde{E
t} = \hat{x} \tau E
{io} \cos(2\pi \times 10^9 t - 2\pi y) = \hat{x} (1.2 \times 40) \cos(2\pi \times 10^9 t - 2\pi y) = 48 \hat{x} \cos(2\pi \times 10^9 t - 2\pi y).
Additional Problems
Medium 1
: \mu = 9\mu
0, \epsilon = \epsilon
0
Medium 2
: \mu = 4\mu
0, \epsilon = \epsilon
0
Incident, reflected, and transmitted electric fields are denoted as \tilde{E
i}, \tilde{E
r}, \tilde{E_t} respectively.
Reflection coefficient: \Gamma = \frac{\eta
2 - \eta
1}{\eta
2 + \eta
1}= -0.2.\tau = 1 + \Gamma = 0.8
2013 Test 1 Q1
Incident electric field: \tilde{E_i} = (\hat{x} - j\hat{y}) 4 e^{-j \frac{2 \pi}{3} z}
Medium 1: \mu
1 = \mu
0, \epsilon
1 = \epsilon
0
Medium 2: \mu; \epsilon; \sigma = \infty (Perfect Electric Conductor, PEC)
At the interface z = 0: \ ild{E_t} = 0
Reflection coefficient: \Gamma = \frac{\eta
2 - \eta
1}{\eta
2 + \eta
1} = \frac{0 - \eta
1}{0 + \eta
1} = -1
Reflected electric field at z = 0: \tilde{E
r}(z=0) = \Gamma \tilde{E
i}(z=0) = - (\hat{x} - j\hat{y}) 4
Magnitude of Reflected Electric Field: |E_r| = \sqrt{4^2 + (-4)^2} = \sqrt{32} = 5.66 V/m
Time Domain Expressions
Reflected Electric Field: ild{E
r}(z, t) = Re[\tilde{E
r} e^{j\omega t}] = (\hat{x} - j\hat{y}) 4 e^{+j \frac{2 \pi}{3} z}
\tilde{E_r}(z, t) = \hat{x} 4 \cos(\omega t + \frac{2 \pi}{3} z) - \hat{y} 4 \sin(\omega t + \frac{2 \pi}{3} z)
Circular Polarization
The wave is Left Hand Circularly Polarized.
Electric Field at z=0: \tilde{E}(0, t) = -\hat{x} 4 \cos(\omega t) - \hat{y} 4 \sin(\omega t)
Amplitudes: a
x = a
y = 4
Phase difference: \delta = 90^\circ
Polarization angle: \psi = \tan^{-1} \left[ \frac{E
y(z, t)}{E
x(z, t)} \right] = \omega t; Varies with time.
Induced Current Density
Boundary condition at PEC interface: \hat{n} \times (\tilde{H
1} - \tilde{H
2}) = \tilde{J_s}
Since Medium 2 is PEC, \tilde{H_2} = 0
Incident magnetic field: \tilde{H
i} = \frac{1}{\eta
o} \hat{z} \times \tilde{E
i} = \frac{1}{\eta
o} \hat{z} \times (\hat{x} - j\hat{y}) 4 e^{-j \frac{2 \pi}{3} z}
Reflected magnetic field: \tilde{H
r} = - \frac{1}{\eta
o} \hat{z} \times \tilde{E
r} = - \frac{1}{\eta
o} \hat{z} \times (\hat{x} - j\hat{y}) 4 e^{+j \frac{2 \pi}{3} z}
Surface current density at z=0:\tilde{J
s} = \hat{n} \times (\tilde{H
1} - \tilde{H
2}) = \hat{z} \times (\tilde{H
i} + \tilde{H
r}) = \hat{z} \times (\frac{2}{\eta
o} (\hat{x} - j\hat{y}) 4) = \frac{8}{\eta_o} (\hat{y} + j\hat{x})
Instantaneous Total Electric Field Intensity
\tilde{E_1} = (\hat{x} - j\hat{y}) 4 e^{-j \frac{2 \pi}{3} z}
\tilde{E
2}(z, t) = Re[\tilde{E
i} + \tilde{E_r}] e^{j \omega t} = Re[(\hat{x} - j\hat{y}) e^{-j \frac{2 \pi}{3} z} + (-\hat{x} - j\hat{y}) e^{+j \frac{2 \pi}{3} z}] e^{j \omega t}
\tilde{E_2}(z, t) = Re[\hat{x} (e^{-j \frac{2 \pi}{3} z} - e^{+j \frac{2 \pi}{3} z}) - j\hat{y} (e^{-j \frac{2 \pi}{3} z} + e^{+j \frac{2 \pi}{3} z})] e^{j \omega t}
Instantaneous Total Electric Field: \tilde{E}(z,t) = \hat{x}2\sin(\frac{2 \pi z}{3})\sin(\omega t) - \hat{y}4\cos(\frac{2 \pi z}{3})
Normal Incidence on Lossy Dielectric Medium
Uniform plane wave normally incident from free space on a lossy dielectric medium.
Medium 1: Free space, \mu
1 = \mu
0, \epsilon
1 = \epsilon
0
Medium 2: Lossy dielectric, \mu
2 = \mu
0, \epsilon
2 = (2.25 - j0.675)\epsilon
0
Incident Electric Field: \tilde{E
i} = \hat{x} 10^{-6} e^{-j k
1 z} V/m
Reflection Coefficient
Relative Permittivity: \epsilon_r = 2.25
Loss Tangent: tan \delta = \frac{\epsilon''}{\epsilon'} = \frac{0.675}{2.25} = 0.3
Since tan \delta << 1, it is a low loss medium.
Intrinsic Impedance of Medium 1: \eta_1 = 120 \pi = 377 \Omega
Approximate Intrinsic Impedance of Medium 2: \eta
2 = \frac{\eta
o}{\sqrt{\epsilon_r}} = \frac{377}{\sqrt{2.25}} = 251.3 \Omega
Reflection Coefficient: \Gamma = \frac{\eta
2 - \eta
1}{\eta
2 + \eta
1} = \frac{251.3 - 377}{251.3 + 377} = -0.2
Exact calculation yields: \Gamma = 0.208 e^{j159.9^\circ}
Reflected and Transmitted Electric Fields
Reflected Electric Field: \tilde{E
r} = \hat{x} \Gamma E
i = \hat{x} 10^{-6} (0.208) e^{j159.9^\circ} e^{jkz} = \hat{x} 2.08 \times 10^{-7} e^{jkz} e^{j159.9^\circ}
Transmission Coefficient: \tau = 1 + \Gamma = 1 + (-0.208e^{j159.9^\circ}) = 0.808 e^{j5.1^\circ}
Attenuation and Phase Constants
Attenuation constant: \alpha = \omega \sqrt{\mu \epsilon} \left[ \sqrt{1 + (\frac{\epsilon ''}{\epsilon '})^2} - 1 \right]^{1/2}
Approximate Attenuation Constant: \alpha_2 = \frac{\omega \mu \epsilon''}{2 \sqrt{\mu \epsilon'}} = 1.35 Np/m
Exact value: \alpha_2 = 1.335 Np/m
Phase constant: \beta = \omega \sqrt{\mu \epsilon} \left[ \sqrt{1 + (\frac{\epsilon ''}{\epsilon '})^2} + 1 \right]^{1/2}
\omega = 1.8 \times 10^9 rad/s
Phase Constant: \beta_2 = \omega \sqrt{\mu \epsilon'} = 9 rad/m
Exact value: \beta_2 = 9.081 rad/m
Transmitted Electric Field
\tilde{E
t} = \hat{x} \tau E
i e^{-\alpha z} e^{-j \beta z} = \hat{x} (0.808 e^{j5.1^\circ} ) (10^{-6}) e^{-1.335 z} e^{-j 9.081 z}
\tilde{E_t} = \hat{x} 8.08 \times 10^{-7} e^{-1.335 z} e^{-j (9.081 z - 5.1^\circ)}
Magnetic Fields and Power Density
Reflected Magnetic Field: \tilde{H
r} = - \frac{1}{\eta
1} \hat{z} \times \tilde{E_r}= \hat{y} \frac{2.08 \times 10^{-7}}{120 \pi}e^{j159.9^\circ}e^{jkz} = \hat{y} 5.778 \times 10^{-10} e^{j159.9^\circ}e^{jkz}
Incident Magnetic Field: \tilde{H
i} = \frac{E
i}{\eta_0} =\hat{y} \frac{10^{-6}}{120*\pi}
Transmitted Magnetic Field: \tilde{H
t} = \frac{1}{\eta
2} \hat{z} \times \tilde{E_t}
{\eta}_2 = 254 e^{j8.5^\circ}
{\alpha}_2 = 1.335 \frac{Np}{m}
{\beta}_2 = 9.081 \frac{rad}{m}
{\tilde{H}}_t = \hat{y} 31.81*10^{-7} e^{j3.4^\circ} e^{-1.335z} e^{-j9.081z}
Time Averaged Power Density
{S}_{av} = Re[\frac{1}{2}E \times H^*]
Time averaged power density in region 1:
{S}
{av} ~\cong Re[\frac{1}{2} \frac{{\tilde{E
i}}^2}{\eta
1} - \frac{{\tilde{E
r}}^2}{\eta_1}]
Time averaged power density in region 2:
{S}
{av} ~\cong Re[\frac{1}{2} \frac{{\tilde{E
t}}^2}{\eta_2}]
{S}_{av} ~\cong Re[\frac{1}{2} {(31.81*10^{-7})}^2 * 254 e^{j3.4^\circ} e^{-1.335z} e^{-j9.081z}]
$${S}_{av} ~\cong 2.67 e^{-2*9.081z +j3.4}$
Note
0.0
(0)
Rate it
Take a practice test
Chat with Kai
undefined Flashcards
0 Cards
0.0
(0)
Explore Top Notes
Position, acceleration, and velocity
Note
Studied by 68 people
5.0
(1)
4.8 E-commerce
Note
Studied by 13 people
5.0
(1)
Chapter 3- Colonial Ways of Life
Note
Studied by 17 people
5.0
(1)
Chapter 9: Heat and States of Matter
Note
Studied by 28 people
5.0
(3)
12-02: Working with Polynomials
Note
Studied by 20 people
5.0
(1)
Chapter 5: Chemical Energetics
Note
Studied by 10 people
5.0
(1)