Calculus 1 Formula Sheet
CALC 1 FORMULA SHEET
Limits
Limit Definitions:
\lim_{x \to a} k = k
\lim_{x \to a} x = a
\lim_{x \to a} (f + g) = \lim f + \lim g
\lim_{x \to a} (fg) = (\lim f)(\lim g)
\lim_{x \to a} \frac{f}{g} = \frac{\lim f}{\lim g}
Standard Limits:
\lim_{x \to 0} \frac{\sin x}{x} = 1
\lim_{x \to 0} \frac{1 - \cos x}{x} = 0
Continuity
Definition of Continuity:
A function is continuous at a point if \lim_{x \to a} f(x) = f(a)
Derivative Rules
Basic Derivative Formulas:
\frac{d}{dx}(c) = 0
\frac{d}{dx}(x^n) = n x^{n-1}
\frac{d}{dx}(cf) = c f'
\frac{d}{dx}(f + g) = f' + g'
\frac{d}{dx}(fg) = f'g + fg'
\frac{d}{dx}(\frac{f}{g}) = \frac{f'g - fg'}{g^2}
(f \circ g)' = f'(g(x)) g'(x)
Trigonometric Derivatives
Derivative Formulas:
(\sin x)' = \cos x
(\cos x)' = -\sin x
(\tan x)' = \sec^2 x
(\cot x)' = -\csc^2 x
(\sec x)' = \sec x \tan x
(\csc x)' = -\csc x \cot x
Inverse Trigonometric Derivatives
Derivative Formulas:
(\sin^{-1} x)' = \frac{1}{\sqrt{1 - x^2}}
(\cos^{-1} x)' = -\frac{1}{\sqrt{1 - x^2}}
(\tan^{-1} x)' = \frac{1}{1 + x^2}
Exponential and Logarithmic Derivatives
Derivative Formulas:
(e^x)' = e^x
(a^x)' = a^x \ln a
(\ln x)' = \frac{1}{x}
Implicit Differentiation
Formula:
\frac{d}{dx}(y^n) = n y^{n-1} y'
Related Rates
Formula:
\frac{dy}{dt} = \left(\frac{dy}{dx}\right)\left(\frac{dx}{dt}\right)
Linear Approximation
Formula:
L(x) = f(a) + f'(a)(x - a)
Differentials
Definition:
dy = f'(x) dx
Antiderivatives
Integral Formulas:
\int x^n dx = \frac{x^{n+1}}{n + 1} + C
\int \frac{1}{x} dx = \ln|x| + C
\int e^x dx = e^x + C
\int a^x dx = \frac{a^x}{\ln(a)} + C
Trigonometric Integrals
Integral Formulas:
\int \sin x dx = -\cos x + C
\int \cos x dx = \sin x + C
\int \sec^2 x dx = \tan x + C
\int \csc^2 x dx = -\cot x + C
\int \sec x \tan x dx = \sec x + C
\int \csc x \cot x dx = -\csc x + C
Definite Integrals
Formulas:
\int_a^b f(x) dx = F(b) - F(a)
\int_a^a f(x) dx = 0
\inta^b f(x) dx = -\intb^a f(x) dx
Riemann Sums
Left Riemann Sum:
Ln = \sum f(x{i-1}) \Delta x
Right Riemann Sum:
Rn = \sum f(xi) \Delta x
Delta x Calculation:
\Delta x = \frac{b - a}{n}
Average Value of a Function
Formula:
f{avg} = \frac{1}{b - a} \inta^b f(x) dx
Fundamental Theorem of Calculus (FTC)
First Part:
\frac{d}{dx} \int_a^x f(t) dt = f(x)
Second Part:
\int_a^b f'(x) dx = f(b) - f(a)
Optimization
Critical Points:
Occur where f'(x) = 0 or is undefined.
Mean Value Theorem (MVT):
Given f'(c) = \frac{f(b) - f(a)}{b - a}
Motion
Relationship Between Position, Velocity, and Acceleration:
v(t) = s'(t)
a(t) = v'(t) = s''(t)
s(t) = \int v(t) dt