E(z, t) = Re[\tilde{E}(z)e^{j\omega t}] = \hat{x}a\cos(\omega t - kz) + \hat{y}a\cos(\omega t - kz + \pi/2) = \hat{x}a\cos(\omega t - kz) - \hat{y}a\sin(\omega t - kz)
Circular Polarization cont.
ax = ay = a and \delta = \pi/2
The corresponding field magnitude and inclination angle are:
|E(z, t)| = [Ex^2(z, t) + Ey^2(z, t)]^{1/2} = [a^2 \cos^2(\omega t - kz) + a^2 \sin^2(\omega t - kz)]^{1/2} = a
\psi(z, t) = \tan^{-1}(\frac{Ey(z, t)}{Ex(z, t)}) = \tan^{-1}(\frac{-a\sin(\omega t - kz)}{a\cos(\omega t - kz)}) = -(\omega t - kz)
ax = ay = a and \delta = -\pi/2
|E(z, t)| = a, \quad \psi = (\omega t - kz)
Circular Polarization Visuals
For a Left Hand Circular Polarized (LHCP) wave:
E(z,t) = \hat{x}Eo \cos(\omega t - kz) - \hat{y}Eo \sin(\omega t - kz)
For a Right Hand Circular Polarized (RHCP) wave:
E(z,t) = \hat{x}Eo \cos(\omega t - kz) + \hat{y}Eo \sin(\omega t - kz)
LHCP and RHCP
Illustrations of LHCP and RHCP waves at different times.
Elliptical Polarization: General Case
When ax \neq ay, or the phase shift is not exactly \pi/2
\tan 2\psi = (\tan 2\alpha_0) \cos \delta
\sin 2\chi = (\sin 2\alpha_0) \sin \delta
(-\pi/2 \le \psi \le \pi/2)
(-\pi/4 \le \chi \le \pi/4)
where \alpha0 is an auxiliary angle defined by \tan \alpha0 = \frac{ay}{ax} \quad (0 \le \alpha_0 \le \frac{\pi}{2})
\psi > 0 if \cos \delta > 0
\psi < 0 if \cos \delta < 0
The polarization ellipse may be tilted.
Linear and Circular Polarization as Special Cases of Elliptical Polarization
Axial Ratio (AR): \text{AR} = \frac{\text{major axis}}{\text{minor axis}}
1 \le \text{AR} \le \infty
Example 7-2: RHC Polarized Wave
An RHC polarized plane wave with an electric field magnitude of 3 (mV/m) is traveling in the +y-direction in a dielectric medium with \varepsilon = 4\varepsilon0, \mu = \mu0, and \sigma = 0.
If the frequency is 100 MHz, obtain expressions for E(y, t) and H(y, t).
Since the wave is traveling in the +y-direction, its field must have components along the x- and z-directions.
By comparison with the RHC polarized wave, we assign the z-component of \tilde{E}(y) a phase angle of zero and the x-component a phase shift of \delta = -\pi/2.