Time and longitude
Longitude is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain. Positive longitudes are east of the prime meridian, and negative ones are west. The concept of longitude was first developed by ancient Greek astronomers. Hipparchus (2nd century BCE) used a coordinate system that assumed a spherical Earth, and divided it into 360° as we still do today. His prime meridian passed through Alexandria. He also proposed a method of determining longitude by comparing the local time of a lunar eclipse at two different places, thus demonstrating an understanding of the relationship between longitude and time. Claudius Ptolemy (2nd century CE) developed a mapping system using curved parallels that reduced distortion. He also collected data for many locations, from Britain to the Middle East. He used a prime meridian through the Canary Islands, so that all longitude values would be positive. While Ptolemy's system was sound, the data he used were often poor, leading to a gross over-estimate (by about 70%) of the length of the Mediterranean. While mariners benefited from the accurate charts, they could not receive telegraph signals while under way, and so could not use the method for navigation. This changed when wireless telegraphy (radio) became available in the early 20th century. Wireless time signals for the use of ships were transmitted from Halifax, Nova Scotia, starting in 1907 and from the Eiffel Tower in Paris from 1910. These signals allowed navigators to check and adjust their chronometers frequently. Each degree of longitude is sub-divided into 60 minutes, each of which is divided into 60 seconds. A longitude is thus specified in sexagesimal notation as, for example, 23° 27′ 30″ E. For higher precision, the seconds are specified with a decimal fraction. An alternative representation uses degrees and minutes, and parts of a minute are expressed in decimal notation, thus: 23° 27.5′ E. Degrees may also be expressed as a decimal fraction: 23.45833° E. For calculations, the angular measure may be converted to radians, so longitude may also be expressed in this manner as a signed fraction of π (pi), or an unsigned fraction of 2π. A geographical mile is defined to be the length of one minute of arc along the equator (one equatorial minute of longitude) therefore a degree of longitude along the equator is exactly 60 geographical miles or 111.3 kilometers, as there are 60 minutes in a degree. The length of 1 minute of longitude along the equator is 1 geographical mile or 1.855 km or 1.153 miles, while the length of 1 second of it is 0.016 geographical mile or 30.916 m or 101.43 feet.