LA

Prokaryotes, Eukaryotes & Eukaryotic Cell Organisation

Prokaryotic Cells

  • Lack a membrane-bound nucleus; genetic material resides in a nucleoid rather than an enclosed compartment.
    • DNA arrangement: \text{single, circular chromosome}.
  • Absence of complex, membrane-bound organelles.
  • Typical cell size: 0.5\text{–}5\,\mu m.
  • Representative groups:
    • Bacteria
    • Archaea
  • Physiological/medical significance (contextual):
    • Unique ribosome structure is a major target for antibiotics, exploiting the prokaryote–eukaryote difference.

Eukaryotic Cells

  • Possess a membrane-bound nucleus that encloses genetic material.
    • DNA arrangement: multiple linear chromosomes.
  • Contain an extensive array of membrane-bound organelles, each specialised for particular cellular functions.
  • Typical cell size: 5\text{–}100\,\mu m.
  • Representative groups:
    • Protozoa
    • Fungi
    • Plants
    • Animals
  • Evolutionary/functional significance: compartmentalisation enables simultaneous, incompatible biochemical reactions and sophisticated regulation.

Prokaryotes vs. Eukaryotes (Comparative Overview)

  • Nucleus:
    • Prokaryote – not fully developed; no nuclear envelope.
    • Eukaryote – well-developed, double-membrane nuclear envelope with nuclear pores.
  • Chromosomes:
    • Prokaryote – 1 circular DNA molecule.
    • Eukaryote – >1 linear DNA molecules (chromosomes).
  • Organelles:
    • Prokaryote – none that are membrane bound.
    • Eukaryote – mitochondria, ER, Golgi, lysosome, etc.
  • Size range:
    • Prokaryote – 0.5\text{–}5\,\mu m.
    • Eukaryote – 5\text{–}100\,\mu m.

Organisation of a Typical Eukaryotic Cell

  • Cytoskeletal elements (structural & motility):
    • Actin (microfilaments)
    • Intermediate filaments
    • Microtubules; organised at the centrosome (pair of centrioles).
  • Extracellular matrix (ECM) provides external support/signalling interface.
  • Core organelles:
    • Nucleus: chromatin, nucleolus, nuclear envelope with pores.
    • Ribosomes (free & membrane-bound).
    • Endoplasmic reticulum (rough and smooth).
    • Golgi apparatus (cis → trans cisternae sequence).
    • Vesicles (transport, secretory, endocytic).
    • Lysosomes.
    • Peroxisomes.
    • Mitochondria.
  • Plasma membrane: phospholipid bilayer ~5\,\text{nm} thick, containing pumps and carriers that regulate selective exchange.

Functional Themes of Eukaryotic Organelles

  • Material production – \text{ribosomes} (protein synthesis).
  • Material sorting – \text{ER} & \text{Golgi}.
  • Material degradation – \text{lysosomes}.
  • Material transport – \text{cytoskeleton}, motor proteins (myosin, kinesin, dynein).
  • Energy – \text{mitochondria} (ATP generation).
  • Information storage/signalling – receptors, protein & second messengers, nucleus (DNA).
  • Multifunctionality: each unit often fulfils several roles (e.g., ER synthesises lipids and stores \text{Ca}^{2+}).

Nucleus (Information Storage & Transcription)

  • Encloses chromosomes, protecting DNA and organising gene expression.
  • Houses nucleolus – site of rRNA transcription & ribosome subunit assembly.
  • Governs DNA → mRNA transcription.
  • Nuclear pores regulate bidirectional traffic (proteins in, mRNA/ribosomal subunits out).

Ribosomes (Material Production)

  • Molecular machines for polypeptide synthesis.
  • Composition:
    • Large and small subunits, each an RNA-protein complex.
  • Localisation:
    • Free in cytosol (cytosolic proteins).
    • Bound to rough ER (secretory & membrane proteins).
  • Universally conserved across all cell types.

Endoplasmic Reticulum & Golgi Apparatus (Packaging, Sorting, Shipping)

  • Rough ER (RER):
    • Studded with ribosomes; synthesises membrane proteins & lumenal proteins.
    • Quality control (folding, post-translational modification).
    • Dispatches proteins to Golgi via vesicles.
  • Smooth ER (SER):
    • Lipid, phospholipid, and steroid hormone synthesis.
    • Carbohydrate metabolism.
    • Detoxification (e.g., alcohol, drugs).
    • \text{Ca}^{2+} ion storage.
  • Golgi apparatus:
    • Cis → medial → trans cisternae progression.
    • Modifies (glycosylation, phosphorylation), sorts, and labels proteins received from ER.
    • Packages cargo into specific vesicles destined for plasma membrane, lysosomes, or secretion.

Lysosomes (Material Degradation & Recycling)

  • Acidic, enzyme-rich organelles for macromolecule digestion.
    • Proteases – proteins.
    • Nucleases – nucleic acids.
    • Carbohydrases – polysaccharides.
    • Lipases – lipids.
  • Degrade material from:
    • Phagocytosis (external particles).
    • Endocytosis (receptor-mediated uptake).
    • Autophagy (self-digestion of organelles).
  • Recycling nutrients; maintaining cellular homeostasis.

Cytoskeleton & Motility Apparatus (Material Transport System)

  • Filament systems:
    • Microfilaments (actin) – cell shape, muscle contraction, cytokinesis.
    • Intermediate filaments – mechanical strength, nuclear lamina.
    • Microtubules – vesicle tracks, chromosome segregation; emanate from centrosome.
  • Molecular motors:
    • Myosin (actin-based).
    • Kinesin (plus-end microtubule motor).
    • Dynein (minus-end microtubule motor, cilia/flagella beating).
  • Enables organelle positioning, vesicular traffic, cell motility.

Plasma Membrane (Structure & Selective Barrier)

  • Phospholipid bilayer thickness ≈ 5\,\text{nm}.
  • Dynamic fluid mosaic: lateral diffusion of lipids/proteins, yet asymmetrical leaflets.
  • Selectivity mechanisms:
    • Passive diffusion (small, non-polar molecules).
    • Pumps (energy-driven), carriers, and channels for regulated exchange.
  • Interface for signal transduction via membrane receptors.

Mitochondria (Energy Generation & Beyond)

  • Principal site of ATP synthesis through oxidative phosphorylation (respiratory chain).
  • Additional roles:
    • Metabolic regulation (fatty acid oxidation, Krebs cycle).
    • Signalling hub for apoptosis (cytochrome c release triggers caspase cascade).
    • Ageing processes and reactive oxygen species (ROS) management.

Structural Hallmarks

  • Double membrane system:
    • Outer membrane (OM).
    • Intermembrane space (IMS).
    • Inner membrane (IM) with cristae – invaginations increasing surface area.
  • Crista junctions connect cristae to peripheral IM regions.
  • Matrix:
    • Contains enzymes of the Krebs cycle, mitochondrial DNA, and ribosomes.

Mitochondrial DNA (mtDNA)

  • Circular, double-stranded; exclusively maternally inherited.
  • Gene content: 37 genes →
    • 13 protein-coding (respiratory chain subunits).
    • 22 tRNAs.
    • 2 rRNAs.
  • Multiple mtDNA copies per organelle.
  • Protein origin:
    • Many mitochondrial proteins are nuclear-encoded, synthesised in cytosol, and imported post-translationally into mitochondria.

Integrative Perspective & Study Tips

  • Remember the “flow” of biomolecules: DNA (nucleus) → mRNA → ribosomes (RER) → Golgi → vesicles → final destination.
  • Distinguish organelle functions by core themes: production, sorting, degradation, transport, energy, information.
  • Size, structure, and genetic organisation differences between prokaryotes and eukaryotes underpin many biomedical tools (e.g., antibiotic selectivity, recombinant protein expression systems).
  • Visual mnemonics:
    • “Rough ≈ Ribosome” (protein processing).
    • “Smooth ≈ Steroids” (lipids, detox).
    • “Golgi = GPS” (labels & sorts).
    • “Lysosome = Lysol” (clean-up).
  • Ethical/practical considerations: manipulation of mitochondrial DNA in disease therapy (e.g., three-parent IVF) highlights organelle genetics relevance.