Derivatives of Inverse Trigonometric and Logarithmic Functions
Derivatives of Inverse Trigonometric Functions
arcsin(x)
- Derivative: \frac{d}{dx}[\arcsin(x)] = \frac{1}{\sqrt{1 - x^2}}
- Domain: -1 < x < 1
- Range: -\frac{\pi}{2} < y < \frac{\pi}{2}
arccos(x)
- Derivative: \frac{d}{dx}[\arccos(x)] = -\frac{1}{\sqrt{1 - x^2}}
- Domain: -1 < x < 1
- Range: 0 < y < \pi
arctan(x)
- Derivative: \frac{d}{dx}[\arctan(x)] = \frac{1}{1 + x^2}
- Domain: -\infty < x < \infty
- Range: -\frac{\pi}{2} < y < \frac{\pi}{2}
arccot(x)
- Derivative: \frac{d}{dx}[\arccot(x)] = -\frac{1}{1 + x^2}
- Domain: -\infty < x < \infty
- Range: 0 < y < \pi
arcsec(x)
- Derivative: \frac{d}{dx}[\arcsec(x)] = \frac{1}{|x|\sqrt{x^2 - 1}}
- Domain: |x| \geq 1
- Range: 0 < y < \frac{\pi}{2}, \frac{\pi}{2} < y < \frac{3\pi}{2}
arccsc(x)
- Derivative: \frac{d}{dx}[\arccsc(x)] = -\frac{1}{|x|\sqrt{x^2 - 1}}
- Domain: |x| \geq 1
- Range: -\frac{\pi}{2} < y < 0, \ 0 < y < \frac{\pi}{2}
Derivatives of Logarithmic Functions
Natural Logarithm (ln)
- Derivative: \frac{d}{dx}[\ln(x)] = \frac{1}{x}
- Domain: x > 0
- Application: Useful for solving problems involving exponential growth and decay.
Logarithm to any base (log_a(x))
- Derivative: \frac{d}{dx}[\log_a(x)] = \frac{1}{x \ln(a)}
- Conditions: where a > 0 and a
eq 1 - Conversion: Can be related to natural logarithm: \log_a(x) = \frac{\ln(x)}{\ln(a)}