ET

Electron Configuration and Orbitals (Energy Levels)

Energy levels and sublevels

  • Principal quantum number: n\in{1,2,3,…}, energy increases with increasing n; no zero level.

  • For each principal level n, there are sublevels: s, p, d, f. The number of sublevels in level n equals n.

  • Examples of sublevels in common levels:

    • n=1:\ 1s

    • n=2:\ 2s, 2p

    • n=3:\ 3s, 3p, 3d

    • n=4:\ 4s, 4p, 4d, 4f

  • Orbitals per sublevel:

    • s: 1\ orbital

    • p: 3\ orbitals

    • d: 5\ orbitals

    • f: 7\ orbitals

  • Max electrons per sublevel:

    • s: 2\, (1\,\text{orbital})

    • p: 6\, (3\,\text{orbitals})

    • d: 10\, (5\,\text{orbitals})

    • f: 14\, (7\,\text{orbitals})

  • Total electrons in level n: N_{max}(n)=2n^2

    • n=1\Rightarrow 2, n=2\Rightarrow 8, n=3\Rightarrow 18

  • Level-to-sublevel order (illustrative): 1s\rightarrow 2s\rightarrow 2p\rightarrow 3s\rightarrow 3p\rightarrow 4s\rightarrow 3d\rightarrow 4p\rightarrow 5s\rightarrow 4d\rightarrow 5p\rightarrow \dots

  • Relationship observed: in each level, s\lt p\lt d\lt f in energy (generally), but exceptions exist (e.g., 4s is lower in energy than 3d).

Orbitals and shapes

  • Orbital = region where there is a high probability of finding an electron; not a fixed path.

  • s orbitals: spherical, one per sublevel.

  • p orbitals: three orbitals per sublevel, dumbbell-shaped along x, y, z axes.

  • d orbitals: five orbitals per sublevel, clover-shaped.

  • f orbitals: more complex shapes (not shown here).

  • Orbital shapes come from the Schrödinger equation; electron location is probabilistic (Heisenberg principle).

  • Electron clouds: density increases near nucleus for s orbitals; p/d/f shapes show regions where electrons are likely found.

Electron configuration rules

  • Aufbau principle: fill lowest-energy sublevels first.

  • Pauli exclusion principle: an orbital holds at most two electrons, with opposite spins.

  • Hund's rule: electrons prefer to occupy separate orbitals within a sublevel with parallel spins before pairing.

  • Notation: sublevels occupied in order, e.g., 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, …

Top-20 electron configurations (summary, patterns to memorize)

  • H: 1s^1

  • He: 1s^2

  • Li: 1s^2 2s^1

  • Be: 1s^2 2s^2

  • B: 1s^2 2s^2 2p^1

  • C: 1s^2 2s^2 2p^2

  • N: 1s^2 2s^2 2p^3

  • O: 1s^2 2s^2 2p^4

  • F: 1s^2 2s^2 2p^5

  • Ne: 1s^2 2s^2 2p^6

  • Na: 1s^2 2s^2 2p^6 3s^1

  • Mg: 1s^2 2s^2 2p^6 3s^2

  • Al: 1s^2 2s^2 2p^6 3s^2 3p^1

  • Si: 1s^2 2s^2 2p^6 3s^2 3p^2

  • P: 1s^2 2s^2 2p^6 3s^2 3p^3

  • S: 1s^2 2s^2 2p^6 3s^2 3p^4

  • Cl: 1s^2 2s^2 2p^6 3s^2 3p^5

  • Ar: 1s^2 2s^2 2p^6 3s^2 3p^6

  • K: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1

  • Ca: 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2

  • Note: after Ar, 4s fills before 3d due to energy ordering in practice; this leads to the d-block (transition metals).

Periods, blocks, and valence electrons

  • Periods reflect number of electron energy levels occupied:

    • Period 1: only n=1 (H, He)

    • Period 2: n=1 and n=2 (Li–Ne)

    • Period 3: n=1–n=3 (Na–Ar)

    • Period 4: beginning of n=4 (K–Ca) and so on

  • Groups reflect same valence electron count (same highest occupied energy level):

    • 1A and 2A: valence in s; elements end in s sublevel (e.g., H, Li, Na, K; Be, Mg, Ca)

    • 3A–8A: valence in p (3A: last is p for B, C, N, O, F, Ne; 8A: noble gases with 8 valence e− except He has 2)

  • Blocks (why named):

    • S-block: groups 1–2; last occupied sublevel is s

    • P-block: groups 13–18; last occupied sublevel is p

    • D-block: transition metals; last electrons in d subshell (begins after Ca)

    • F-block: lanthanides/actinides; last electrons in f subshell

  • Valence electrons (quick reference):

    • 1A: 1 valence e−; 2A: 2; 3A: 3; 4A: 4; 5A: 5; 6A: 6; 7A: 7; 8A (noble gases): 8 (He = 2)

  • Concept: noble gases are chemically inert due to full valence shell (octet, except He with 2)

Quick reference formulas and concepts

  • Orbitals per sublevel: s:\ 1,\ p:\ 3,\ d:\ 5,\ f:\ 7

  • Max electrons per sublevel: s:2,\ p:6,\ d:10,\ f:14

  • Total electrons in level n: N_{max}(n)=2n^2

  • Filling order (Aufbau) simplified: 1s\rightarrow 2s\rightarrow 2p\rightarrow 3s\rightarrow 3p\rightarrow 4s\rightarrow 3d\rightarrow 4p\rightarrow 5s\rightarrow 4d\rightarrow 5p\rightarrow \dots

  • Pauli exclusion: an orbital holds at most two electrons with opposite spins.

  • Hund's rule: within a sublevel, electrons occupy separate orbitals with parallel spins before pairing.

  • Schrödinger equation underpins orbital shapes; electron location is probabilistic, not a fixed path.