The actual digits measured by an instrument. Precision is determined by one place value greater than the smallest marking on the instrument.
Rules for Determining Number of Significant Digits
- All nonzero digits are significant
- If the last digit is 0 and preceded by a decimal
- All zeros between significant digits are significant
When adding and subtracting, round to the least precise place.
When multiplying and dividing, round to the lowest number of significant digits.
To show significance of a zero you could: add a decimal point, add a line above, or write in scientific notation.
PHASE CHANGES
There are six types of phase change:
- Solid to liquid is melting
- Liquid to solid is freezing
- Liquid to gas is evaporation
- Gas to liquid is condensation
- Solid to gas is sublimation
- Gas to solid is deposition
DIAGRAMS
- They occur with the addition/removal of heat
- Occur when temperature remains
PROPERTIES
- Physical properties are observed without changing the substance
- Chemical properties are observed with changes or reactions.
- Extensive properties depend on amount present
- Intensive properties are not dependent on amount (all chemical)
ELEMENTS
- Consists of only one type of particle (atom)
- Pure substance
- Homogeneous
- Cannot be broken down
- Represented by a symbol
- Found on the periodic table
COMPOUNDS
- Consist of only one particle: molecules of multiple elements.
- Pure substance
-Homogeneous
- Separable with chemical methods
- Composed of elements in ratios
- Represented by a formula
MIXTURES
- Two or more different particles
- Homogeneous or heterogeneous
- Separable physically and chemically
- Composed of phases and interfaces
ex: pizza
phases interfaces
pepperoni pepperoni-cheese
sauce dough/sauce
cheese cheese/sauce
onion onion/cheese
dough
- Aristotle thought all matter was made of four elements (earth, wind, water, fire).
- Democritus believed that matter was made of indivisible particles (atomos).
- Dalton proposed modern atomic theory:
Matter is made of atoms
Same elements are made of same atoms (false)
Atoms cannot be created nor destroyed (false)
Their combinations form chemical reactions and compounds.
- Thomson performed cathode ray experiments and discovered electron. Developed "plum pudding" model.
- Rutherford performed gold foil experiment and discovered the nucleus (proton).
- Bohr developed solar system model of the atom. Though, he only studied hydrogen.
- Wave Model, by Schrödinger and Heisenberg, states that electrons are in probability clouds.
Protons | Neutrons | Electrons
Positive | No charge | Negative charge
in nucleus | Found in nucleus | nucleus and clouds
m: 1 amu | m: 1 amu | m: ~0 amu
Rutherford | Chadwick | Thomson
- The atomic number is the number of protons - determines the element.
- The mass is determined by P+N
- Electron number is equal to protons.
- Weighted average of the relative abundance of each isotope
- An Isotope has the same number of protons, with a different neutron count.
- Average Mass = Σpm
Mass Spec
[Graph showing:
x-axis: Mass
y-axis: Amount%
Three peaks at masses 10, 11, and 12
Highest peak at mass 11]
Σ a/40 Q = 10.88
- Electrons are located in energy levels which are subdivided into sublevels and orbitals.
- Energy Levels: 1-7
- Electrons held: 2n²
SUBLEVELS
s: 1 orbital - 2 electrons max
p: 3 orbitals - 6 electrons max
d: 5 orbitals - 10 electrons max
f: 7 orbitals - 14 electrons max
ORDER
- 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p
RULES
- Aufbau Principle: electrons fill lower energy levels before filling higher energy levels
- Hund's Rule: electrons in a sublevel will fill each orbital before pairing up.
- Pauli Exclusion Principle: electrons in the same orbital will have different spins.
ORBITAL NOTATION
- Graphically represents the distribution of electrons.S
Sigma: All single bond sand 1 of the bonds in a multiple
Pi: The remaining bonds in a multiple bond that are not sigma.
Caused by uneven distribution of electrons.
Result when polar bonds are arranged in an asymmetric shape molecule (bent, trigonal, pyramidal, see-saw, T-shaped, square-pyramid) or when there are different atoms around the center of a symmetrically shaped molecule.
Forces between molecules that help determine properties of the substance.
Stronger IMF result in substance having a higher melting/boiling point, viscosity, and cohesive forces.
3 Types:
London Dispersion: weakest and result from random polarization of a molecule due to movement of electrons (low melting/boiling points). Occurs in all substances, polar or nonpolar. Higher molecular weight results in higher London Dispersion.
Dipole-Dipole: Result between polar molecules when positive end of one molecule attracts the negative end of another molecule (high melting/boiling points.)
Hydrogen Bonding: Strong dipole-dipole bond that involes a molecules with hydrogen and nitrogen, oxygen, or fluorine. This is the reason for water’s special properties.
Multiple Choice/Short Answer
Distinguish between ionic, covalent, and metallic bonds based on characteristics and descriptions.
Given either a periodic table or a table of electronegativies, predict the bond type.
Draw Lewis Dot symbols for elements and count valence electrons
Apply Octet Rule to draw models.
Identify shapes and electron domains.
Identify bond angles.
Identify hybridization of central atoms.
Identify sigma and pi bonds.
Determine polarity.
Distinguish between IMF’s and apply properties.
Five Types
Synthesis: multiple reactants to make one product. A+B > AB
Decomposition: one reactant makes multiple products. AB > A+B
Single Replacement/Displacement: element and compound react to produce a different element and compound.
Double Replacement/Displacement: two compounds exchange cations to produce two different compounds. AB+CD > AD+CB.
Combustion: A carbon compound reacts with gas, producing carbon dioxide and water. CH4 + O2 > CO2 + H2O
Binary compound: Product is the two elements in the compound
Reactant is a metal carbonate: Product is a metal oxide and carbon dioxide
Reactant is a metal chlorate: Product is a metal chloride and oxygen
Reactant is two elements: Product is a binary compound
Reactant is a metal oxide and water: Product is a metal hydroxide
Reactant is a nonmetal oxide and water: Product is an acid (H and polyatomic)
Reactant is an element and a compound: Product is an element and a compound (“likes” replaces “likes”). Single element must be above compound element in series).
Reactant is two compounds: Product is two compounds (switch the first ions)
Product is a carbon compound with oxygen: Products are carbon dioxide and water
Shows the mathematical relationships within a balanced equation.
Equation must be balanced to solve a stoichiometry problem.
Steps:
Change given(s) to moles
Convert to the new substance using coefficient ratios
Change to unit wanted
Limit or restrict the amount of product produced.
Limiting reactant is consumed during the reaction.
Excess reactant remains after the limiting reactant used up.