knowt logo

Physics 151 Equations

Name

Equations

Units (if specified)

Extra Notes

Average speed

v=dΔt\overline{v}=\dfrac{d}{\Delta t}

m/sm/s

Average velocity

v=ΔxΔt\overline{v}=\dfrac{\Delta x}{\Delta t}

m/sm/s

2D kinematics: replace x with r

Instantaneous velocity

v=limΔt0ΔxΔt\overrightarrow{v}=\lim _{\Delta t\rightarrow 0}\dfrac{\Delta \overrightarrow{x}}{\Delta t}

m/sm/s

2D kinematics: replace x with r

Average acceleration

a=ΔvΔt\overrightarrow{\overline{a}}=\dfrac{\Delta \overrightarrow{v}}{\Delta t}

m/s2m/s^{2}

Displacement

Δx=xx0\Delta x=x-x_{0}

mm

2D kinematics: replace x with r

Slope

ΔyΔx\dfrac{\Delta y}{\Delta x}

ΔxΔt\dfrac{\Delta x}{\Delta t} or ΔvΔx\dfrac{\Delta v}{\Delta x}

Kinematics (1D)

v=v0+atv=v_{0}+at

x=12(v0+v)tx=\dfrac{1}{2}\left( v_{0}+v\right) t

v2=v02+2axv^{2}=v_{0}^{2}+2ax

x=v0t+12at2x=v_{0}t+\dfrac{1}{2}at^{2}

Kinematics (2D)

v?=v0?+a?tv_{?}=v_{0?}+a_{?}t

?=v0?t+12a?t2?=v_{0?}t+\dfrac{1}{2}a_{?}t^{2}

?=12(v0?+v?)t?=\dfrac{1}{2}\left( v_{0?}+v_{?}\right) t

v?2=v0?2+2a??v_{?}^{2}=v_{0?}^{2}+2a_{?}?

? means replace with x OR y

Projectile motion:

ay=9.80m/s2a_{y}=-9.80m/s^{2}

ax=0a_{x}=0

Relative velocity

vab=vbvav_{ab}=v_{b}-v_{a}

m/sm/s

Newton’s 2nd Law

ΣF=ma\Sigma F=ma

N

2D: F?=ma?\sum F_{?}=ma_{?}

Gravitational force

F=Gm1m2r2F=G\dfrac{m_{1}m_{2}}{r^{2}}

Nm2kg2\dfrac{N\cdot m^{2}}{kg^{2}}

G=6.673×1011G =6.673\times 10^{-11}

Nm2/kg2N\cdot m^{2}/kg^{2}

Weight

W=mgW=mg

N

Always acts down

Normal force

FN=mgF_{N}=mg

N

Perpendicular force

Static friction

fsMAX=μsFNf_{s}^{MAX}=\mu_s \cdot F_{N}

Force before breakaway

Kinetic friction

fk=μkFN f_{\text{k}} = \mu_k \cdot F_{N}

Moving surfaces

Velocity in circular motion

vc=2πrTv_{c}=\dfrac{2\pi r}{T}

m/sm/s

Changes direction, not constant

Period (T)

T=1frequencyT=\dfrac{1}{frequency}

ss

To make one revolution

Centripetal acceleration

ac=v2ra_{c}=\dfrac{v^{2}}{r}

m/s2m/s^{2}

Direction towards the center

Centripetal force

Fc=mv2rF_{c}=\dfrac{mv^{2}}{r} or Fc=macF_{c}=ma_{c}

N

Always directed towards the center, changes direction

Speed of a satellite

v=GMErv=\sqrt{\dfrac{GM_{E}}{r}}

m/sm/s

Period of a satellite

T=2πr32GMET=\dfrac{2\pi r^{\dfrac{3}{2}}}{\sqrt{GM_{E}}}

Work

W=FsW=Fs or

W=FcosθsW=Fcos\theta s

J

cos0° = 1 (F)

cos90° = 0

cos180° = -1 (-F)

Kinetic energy

KE=12mv2KE=\dfrac{1}{2}mv^{2}

J

Always positive

Work-energy theorem

W=KEfKE0W=KE_{f}-KE_{0}

J

Potential energy and gravitational PE

PE=mghPE=mgh

Wgravity=mg(h0hf)W_{gravity}=mg\left(h_{0}-h_{f}\right)

J

Stored energy

PE max = KE is 0

PE is 0 = KE max

Work for closed path

Wgravity=0JW_{gravity}=0 J

J

Conservative and Nonconservative forces acting together

W=Wc+WncW=W_{c}+W_{nc}

J

Both forces act on an object at the same time

Conservation of energy

Ef=E0E_{f}=E_{0}

KEf+PEf=KE0+PE0KE_{f}+PE_{f}=KE_{0}+PE_{0}

J

Work energy theorem (nonconservative)

Wnc=EfE0W_{nc}=E_{f}-E_{0} or

(PEf+KEf)(PE0+KE0)\left( PE_{f}+KE_{f}\right) -\left( PE_{0}+KE_{0}\right)

J

Total mechanical energy

E=KE+PEE=KE+PE

J

Average power

P=Wt\overline{P}=\dfrac{W}{t}

W

Impulse

J=FΔt\overrightarrow{J}=F\Delta t

NsN\cdot s

change in momentum

same direction as avg. force

Linear momentum

p=mv\overrightarrow{p}=m\overrightarrow{v}

kgm/skg\cdot m/s

mass in motion

Impulse-momentum theorem

FΔt=pfp0\sum F\Delta t=p_{f}-p_{0}

when a net force acts on an object, the impulse force is equal to the change in the momentum

Principle of conservation of linear momentum

pf=p0p_{f}=p_{0}

Collisions in 1D

pf1+pf2=p01+p02p_{f1}+p_{f2}=p_{01}+p_{02}

Collisions in 2D

pf1?+pf2?=p01?+p02?p_{f1?}+p_{f2?}=p_{01?}+p_{02?}

? means x or y

Center of mass (CoM)

xcm=m1x1+m2x2m1+m2x_{cm}=\dfrac{m_{1}x_{1}+m_{2}x_{2}}{m_{1}+m_{2}}

Velocity of CoM

vcm=m1v1+m2v2m1+m2v_{cm}=\dfrac{m_{1}v_{1}+m_{2}v_{2}}{m_{1}+m_{2}}

Angular displacement

Δθ=θθ0\Delta \theta =\theta -\theta _{0}

Angular displacement in radians

θ=sr\theta =\dfrac{s}{r}

Arc length

s=rθs=r\theta

Full revolution

2πrad=360°2\pi rad=360°

Angular velocity

ω=ΔθΔt\overline{\omega }=\dfrac{\Delta \theta }{\Delta t}

Angular acceleration

α=ΔωΔt\overline{\alpha }=\dfrac{\Delta \omega }{\Delta t}

Rotational kinematics

ω=ω0+αt\omega =\omega _{0}+\alpha t

θ=12(ω0+ω)t\theta =\dfrac{1}{2}\left( \omega _{0}+\omega \right) t

θ=ω0t+12αt2\theta =\omega _{0}t+\dfrac{1}{2}\alpha t^{2}

ω2=ω02+2αθ\omega ^{2}=\omega _{0}^{2}+2\alpha \theta

Tangential velocity

vT=rωv_{T}=r\omega

Tangential acceleration

aT=rαa_{T}=r\alpha

Centripetal acceleration

ac=rω2a_{c}=r\omega ^{2}

Pythagorean theorem

(acceleration)

a=ac2+aT2\overrightarrow{a}=\sqrt{\overrightarrow{a}_{c}^{2}+\overrightarrow{a_{T}}^{2}}

Translational velocity

v=rwv=rw

Translational acceleration

a=rαa=r\alpha

Torque

τ=Fl\tau =Fl

Equilibrium conditions

ΣFx=0\Sigma F_{x}=0

ΣFy=0\Sigma F_{y}=0

Στ=0\Sigma \tau =0

Center of gravity

xcg=W1x1+W2x2W1+W2x_{cg}=\dfrac{W_{1}x_{1}+W_{2}x_{2}}{W_{1}+W_{2}}

Tangential force

FT=maTF_{T}=ma_{T}

w/ sub τ=(mr2)α\tau =\left( mr^{2}\right) \alpha

Inertia

I=mr2I=mr^{2}

Moment of inertia

Στ=(mr2)α\Sigma \tau=\sum \left( mr^{2}\right) \alpha

τ1+τ2+τ3\tau1+\tau2+\tau3

Net external force

Στ=Iα\Sigma \tau =I\alpha

Rotational work

WR=τθW_{R}=\tau \theta

Rotational KE

KER=12Iω2KE_{R}=\dfrac{1}{2}I\omega ^{2}

Total KE

KEtota1=12Iω2+12mvT2KE_{tota1}=\dfrac{1}{2}I\omega ^{2}+\dfrac{1}{2}mv_{T}^{2}

Mechanical energy of a rotating object

E=12mv2+12Iω2+mghE=\dfrac{1}{2}mv^{2}+\dfrac{1}{2}I\omega ^{2}+mgh

Energy conservation: Ef=E0E_{f}=E_{0}

Angular momentum

L=IωL=I\omega

Mass density

ρ=mV\rho =\dfrac{m}{V}

Pressure

P=FAP=\dfrac{F}{A}

Pressure and depth in static fluid

P2=P1+ρghP_{2}=P_{1}+\rho gh

Pressure gauges

Patm=ρghP_{atm}=\rho gh

Archimede’s principle

FB=ρVgF_{B}=\rho Vg

buoyant force = mass of displaced fluid

Linear thermal expansion

ΔL=αL0ΔT\Delta L=\alpha L_{0}\Delta T

Volume thermal expansion

ΔV=βV0ΔT\Delta V=\beta V_{0}\Delta T

Specific heat capacity

Q=mcΔTQ=mc\Delta T

Latent heat

Q=mLQ=mL

Restoring force produced by a spring

Fx=kxF_{x}=kx

Hooke’s law

Fx=kxF_{x}=-kx

displacement

x=Acosωtx=A\cos \omega t

Frequency

f=1Tf=\dfrac{1}{T}

Angular frequency

ω=2πf\omega =2\pi f or

ω=km\omega =\sqrt{\dfrac{k}{m}}

Max speed (shm)

vmax=Awv_{max}=Aw

Max acceleration (shm)

amax=Aw2a_{max}=Aw^{2}

Work done by spring

W=(Fcosθ)sW=\left( F\cos \theta \right) s

W=12kx0212kxf2W=\dfrac{1}{2}kx_{0}^{2}-\dfrac{1}{2}kx_{f}^{2}

Mechanical energy

insert

PE elastic

12kx2\dfrac{1}{2}kx^{2}

Functions

sinθ=oh\sin \theta =\dfrac{o}{h}

cosθ=ah\cos \theta =\dfrac{a}{h}

tanθ=oa\tan \theta =\dfrac{o}{a}

Inverse Function

θ=sin1(oh)\theta =\sin ^{-1}\left( \dfrac{o}{h}\right)

θ=cos1(ah)\theta =\cos ^{-1}\left( \dfrac{a}{h}\right)

θ=tan1(oa)\theta =\tan ^{-1}\left( \dfrac{o}{a}\right)

Pythagorean Theorem/Finding Resultant

h2=o2+a2h^{2}=o^{2}+a^{2}

R2=A2+B2R^{2}=A^{2}+B^{2}

S

Physics 151 Equations

Name

Equations

Units (if specified)

Extra Notes

Average speed

v=dΔt\overline{v}=\dfrac{d}{\Delta t}

m/sm/s

Average velocity

v=ΔxΔt\overline{v}=\dfrac{\Delta x}{\Delta t}

m/sm/s

2D kinematics: replace x with r

Instantaneous velocity

v=limΔt0ΔxΔt\overrightarrow{v}=\lim _{\Delta t\rightarrow 0}\dfrac{\Delta \overrightarrow{x}}{\Delta t}

m/sm/s

2D kinematics: replace x with r

Average acceleration

a=ΔvΔt\overrightarrow{\overline{a}}=\dfrac{\Delta \overrightarrow{v}}{\Delta t}

m/s2m/s^{2}

Displacement

Δx=xx0\Delta x=x-x_{0}

mm

2D kinematics: replace x with r

Slope

ΔyΔx\dfrac{\Delta y}{\Delta x}

ΔxΔt\dfrac{\Delta x}{\Delta t} or ΔvΔx\dfrac{\Delta v}{\Delta x}

Kinematics (1D)

v=v0+atv=v_{0}+at

x=12(v0+v)tx=\dfrac{1}{2}\left( v_{0}+v\right) t

v2=v02+2axv^{2}=v_{0}^{2}+2ax

x=v0t+12at2x=v_{0}t+\dfrac{1}{2}at^{2}

Kinematics (2D)

v?=v0?+a?tv_{?}=v_{0?}+a_{?}t

?=v0?t+12a?t2?=v_{0?}t+\dfrac{1}{2}a_{?}t^{2}

?=12(v0?+v?)t?=\dfrac{1}{2}\left( v_{0?}+v_{?}\right) t

v?2=v0?2+2a??v_{?}^{2}=v_{0?}^{2}+2a_{?}?

? means replace with x OR y

Projectile motion:

ay=9.80m/s2a_{y}=-9.80m/s^{2}

ax=0a_{x}=0

Relative velocity

vab=vbvav_{ab}=v_{b}-v_{a}

m/sm/s

Newton’s 2nd Law

ΣF=ma\Sigma F=ma

N

2D: F?=ma?\sum F_{?}=ma_{?}

Gravitational force

F=Gm1m2r2F=G\dfrac{m_{1}m_{2}}{r^{2}}

Nm2kg2\dfrac{N\cdot m^{2}}{kg^{2}}

G=6.673×1011G =6.673\times 10^{-11}

Nm2/kg2N\cdot m^{2}/kg^{2}

Weight

W=mgW=mg

N

Always acts down

Normal force

FN=mgF_{N}=mg

N

Perpendicular force

Static friction

fsMAX=μsFNf_{s}^{MAX}=\mu_s \cdot F_{N}

Force before breakaway

Kinetic friction

fk=μkFN f_{\text{k}} = \mu_k \cdot F_{N}

Moving surfaces

Velocity in circular motion

vc=2πrTv_{c}=\dfrac{2\pi r}{T}

m/sm/s

Changes direction, not constant

Period (T)

T=1frequencyT=\dfrac{1}{frequency}

ss

To make one revolution

Centripetal acceleration

ac=v2ra_{c}=\dfrac{v^{2}}{r}

m/s2m/s^{2}

Direction towards the center

Centripetal force

Fc=mv2rF_{c}=\dfrac{mv^{2}}{r} or Fc=macF_{c}=ma_{c}

N

Always directed towards the center, changes direction

Speed of a satellite

v=GMErv=\sqrt{\dfrac{GM_{E}}{r}}

m/sm/s

Period of a satellite

T=2πr32GMET=\dfrac{2\pi r^{\dfrac{3}{2}}}{\sqrt{GM_{E}}}

Work

W=FsW=Fs or

W=FcosθsW=Fcos\theta s

J

cos0° = 1 (F)

cos90° = 0

cos180° = -1 (-F)

Kinetic energy

KE=12mv2KE=\dfrac{1}{2}mv^{2}

J

Always positive

Work-energy theorem

W=KEfKE0W=KE_{f}-KE_{0}

J

Potential energy and gravitational PE

PE=mghPE=mgh

Wgravity=mg(h0hf)W_{gravity}=mg\left(h_{0}-h_{f}\right)

J

Stored energy

PE max = KE is 0

PE is 0 = KE max

Work for closed path

Wgravity=0JW_{gravity}=0 J

J

Conservative and Nonconservative forces acting together

W=Wc+WncW=W_{c}+W_{nc}

J

Both forces act on an object at the same time

Conservation of energy

Ef=E0E_{f}=E_{0}

KEf+PEf=KE0+PE0KE_{f}+PE_{f}=KE_{0}+PE_{0}

J

Work energy theorem (nonconservative)

Wnc=EfE0W_{nc}=E_{f}-E_{0} or

(PEf+KEf)(PE0+KE0)\left( PE_{f}+KE_{f}\right) -\left( PE_{0}+KE_{0}\right)

J

Total mechanical energy

E=KE+PEE=KE+PE

J

Average power

P=Wt\overline{P}=\dfrac{W}{t}

W

Impulse

J=FΔt\overrightarrow{J}=F\Delta t

NsN\cdot s

change in momentum

same direction as avg. force

Linear momentum

p=mv\overrightarrow{p}=m\overrightarrow{v}

kgm/skg\cdot m/s

mass in motion

Impulse-momentum theorem

FΔt=pfp0\sum F\Delta t=p_{f}-p_{0}

when a net force acts on an object, the impulse force is equal to the change in the momentum

Principle of conservation of linear momentum

pf=p0p_{f}=p_{0}

Collisions in 1D

pf1+pf2=p01+p02p_{f1}+p_{f2}=p_{01}+p_{02}

Collisions in 2D

pf1?+pf2?=p01?+p02?p_{f1?}+p_{f2?}=p_{01?}+p_{02?}

? means x or y

Center of mass (CoM)

xcm=m1x1+m2x2m1+m2x_{cm}=\dfrac{m_{1}x_{1}+m_{2}x_{2}}{m_{1}+m_{2}}

Velocity of CoM

vcm=m1v1+m2v2m1+m2v_{cm}=\dfrac{m_{1}v_{1}+m_{2}v_{2}}{m_{1}+m_{2}}

Angular displacement

Δθ=θθ0\Delta \theta =\theta -\theta _{0}

Angular displacement in radians

θ=sr\theta =\dfrac{s}{r}

Arc length

s=rθs=r\theta

Full revolution

2πrad=360°2\pi rad=360°

Angular velocity

ω=ΔθΔt\overline{\omega }=\dfrac{\Delta \theta }{\Delta t}

Angular acceleration

α=ΔωΔt\overline{\alpha }=\dfrac{\Delta \omega }{\Delta t}

Rotational kinematics

ω=ω0+αt\omega =\omega _{0}+\alpha t

θ=12(ω0+ω)t\theta =\dfrac{1}{2}\left( \omega _{0}+\omega \right) t

θ=ω0t+12αt2\theta =\omega _{0}t+\dfrac{1}{2}\alpha t^{2}

ω2=ω02+2αθ\omega ^{2}=\omega _{0}^{2}+2\alpha \theta

Tangential velocity

vT=rωv_{T}=r\omega

Tangential acceleration

aT=rαa_{T}=r\alpha

Centripetal acceleration

ac=rω2a_{c}=r\omega ^{2}

Pythagorean theorem

(acceleration)

a=ac2+aT2\overrightarrow{a}=\sqrt{\overrightarrow{a}_{c}^{2}+\overrightarrow{a_{T}}^{2}}

Translational velocity

v=rwv=rw

Translational acceleration

a=rαa=r\alpha

Torque

τ=Fl\tau =Fl

Equilibrium conditions

ΣFx=0\Sigma F_{x}=0

ΣFy=0\Sigma F_{y}=0

Στ=0\Sigma \tau =0

Center of gravity

xcg=W1x1+W2x2W1+W2x_{cg}=\dfrac{W_{1}x_{1}+W_{2}x_{2}}{W_{1}+W_{2}}

Tangential force

FT=maTF_{T}=ma_{T}

w/ sub τ=(mr2)α\tau =\left( mr^{2}\right) \alpha

Inertia

I=mr2I=mr^{2}

Moment of inertia

Στ=(mr2)α\Sigma \tau=\sum \left( mr^{2}\right) \alpha

τ1+τ2+τ3\tau1+\tau2+\tau3

Net external force

Στ=Iα\Sigma \tau =I\alpha

Rotational work

WR=τθW_{R}=\tau \theta

Rotational KE

KER=12Iω2KE_{R}=\dfrac{1}{2}I\omega ^{2}

Total KE

KEtota1=12Iω2+12mvT2KE_{tota1}=\dfrac{1}{2}I\omega ^{2}+\dfrac{1}{2}mv_{T}^{2}

Mechanical energy of a rotating object

E=12mv2+12Iω2+mghE=\dfrac{1}{2}mv^{2}+\dfrac{1}{2}I\omega ^{2}+mgh

Energy conservation: Ef=E0E_{f}=E_{0}

Angular momentum

L=IωL=I\omega

Mass density

ρ=mV\rho =\dfrac{m}{V}

Pressure

P=FAP=\dfrac{F}{A}

Pressure and depth in static fluid

P2=P1+ρghP_{2}=P_{1}+\rho gh

Pressure gauges

Patm=ρghP_{atm}=\rho gh

Archimede’s principle

FB=ρVgF_{B}=\rho Vg

buoyant force = mass of displaced fluid

Linear thermal expansion

ΔL=αL0ΔT\Delta L=\alpha L_{0}\Delta T

Volume thermal expansion

ΔV=βV0ΔT\Delta V=\beta V_{0}\Delta T

Specific heat capacity

Q=mcΔTQ=mc\Delta T

Latent heat

Q=mLQ=mL

Restoring force produced by a spring

Fx=kxF_{x}=kx

Hooke’s law

Fx=kxF_{x}=-kx

displacement

x=Acosωtx=A\cos \omega t

Frequency

f=1Tf=\dfrac{1}{T}

Angular frequency

ω=2πf\omega =2\pi f or

ω=km\omega =\sqrt{\dfrac{k}{m}}

Max speed (shm)

vmax=Awv_{max}=Aw

Max acceleration (shm)

amax=Aw2a_{max}=Aw^{2}

Work done by spring

W=(Fcosθ)sW=\left( F\cos \theta \right) s

W=12kx0212kxf2W=\dfrac{1}{2}kx_{0}^{2}-\dfrac{1}{2}kx_{f}^{2}

Mechanical energy

insert

PE elastic

12kx2\dfrac{1}{2}kx^{2}

Functions

sinθ=oh\sin \theta =\dfrac{o}{h}

cosθ=ah\cos \theta =\dfrac{a}{h}

tanθ=oa\tan \theta =\dfrac{o}{a}

Inverse Function

θ=sin1(oh)\theta =\sin ^{-1}\left( \dfrac{o}{h}\right)

θ=cos1(ah)\theta =\cos ^{-1}\left( \dfrac{a}{h}\right)

θ=tan1(oa)\theta =\tan ^{-1}\left( \dfrac{o}{a}\right)

Pythagorean Theorem/Finding Resultant

h2=o2+a2h^{2}=o^{2}+a^{2}

R2=A2+B2R^{2}=A^{2}+B^{2}