Name | Equations | Units (if specified) | Extra Notes |
Average speed | \overline{v}=\dfrac{d}{\Delta t} | m/s | |
Average velocity | \overline{v}=\dfrac{\Delta x}{\Delta t} | m/s | 2D kinematics: replace x with r |
Instantaneous velocity | \overrightarrow{v}=\lim _{\Delta t\rightarrow 0}\dfrac{\Delta \overrightarrow{x}}{\Delta t} | m/s | 2D kinematics: replace x with r |
Average acceleration | \overrightarrow{\overline{a}}=\dfrac{\Delta \overrightarrow{v}}{\Delta t} | m/s^{2} | |
Displacement | \Delta x=x-x_{0} | m | 2D kinematics: replace x with r |
Slope | \dfrac{\Delta y}{\Delta x} | \dfrac{\Delta x}{\Delta t} or \dfrac{\Delta v}{\Delta x} | |
Kinematics (1D) | v=v_{0}+at x=\dfrac{1}{2}\left( v_{0}+v\right) t v^{2}=v_{0}^{2}+2ax x=v_{0}t+\dfrac{1}{2}at^{2} | ||
Kinematics (2D) | v_{?}=v_{0?}+a_{?}t ?=v_{0?}t+\dfrac{1}{2}a_{?}t^{2} ?=\dfrac{1}{2}\left( v_{0?}+v_{?}\right) t v_{?}^{2}=v_{0?}^{2}+2a_{?}? | ? means replace with x OR y Projectile motion: a_{y}=-9.80m/s^{2} a_{x}=0 | |
Relative velocity | v_{ab}=v_{b}-v_{a} | m/s | |
Newton’s 2nd Law | \Sigma F=ma | N | 2D: \sum F_{?}=ma_{?} |
Gravitational force | F=G\dfrac{m_{1}m_{2}}{r^{2}} | \dfrac{N\cdot m^{2}}{kg^{2}} | G =6.673\times 10^{-11} N\cdot m^{2}/kg^{2} |
Weight | W=mg | N | Always acts down |
Normal force | F_{N}=mg | N | Perpendicular force |
Static friction | f_{s}^{MAX}=\mu_s \cdot F_{N} | Force before breakaway | |
Kinetic friction | f_{\text{k}} = \mu_k \cdot F_{N} | Moving surfaces | |
Velocity in circular motion | v_{c}=\dfrac{2\pi r}{T} | m/s | Changes direction, not constant |
Period (T) | T=\dfrac{1}{frequency} | s | To make one revolution |
Centripetal acceleration | a_{c}=\dfrac{v^{2}}{r} | m/s^{2} | Direction towards the center |
Centripetal force | F_{c}=\dfrac{mv^{2}}{r} or F_{c}=ma_{c} | N | Always directed towards the center, changes direction |
Speed of a satellite | v=\sqrt{\dfrac{GM_{E}}{r}} | m/s | |
Period of a satellite | T=\dfrac{2\pi r^{\dfrac{3}{2}}}{\sqrt{GM_{E}}} | ||
Work | W=Fs or W=Fcos\theta s | J | cos0° = 1 (F) cos90° = 0 cos180° = -1 (-F) |
Kinetic energy | KE=\dfrac{1}{2}mv^{2} | J | Always positive |
Work-energy theorem | W=KE_{f}-KE_{0} | J | |
Potential energy and gravitational PE | PE=mgh W_{gravity}=mg\left(h_{0}-h_{f}\right) | J | Stored energy PE max = KE is 0 PE is 0 = KE max |
Work for closed path | W_{gravity}=0 J | J | |
Conservative and Nonconservative forces acting together | W=W_{c}+W_{nc} | J | Both forces act on an object at the same time |
Conservation of energy | E_{f}=E_{0} KE_{f}+PE_{f}=KE_{0}+PE_{0} | J | |
Work energy theorem (nonconservative) | W_{nc}=E_{f}-E_{0} or \left( PE_{f}+KE_{f}\right) -\left( PE_{0}+KE_{0}\right) | J | |
Total mechanical energy | E=KE+PE | J | |
Average power | \overline{P}=\dfrac{W}{t} | W | |
Impulse | \overrightarrow{J}=F\Delta t | N\cdot s | change in momentum same direction as avg. force |
Linear momentum | \overrightarrow{p}=m\overrightarrow{v} | kg\cdot m/s | mass in motion |
Impulse-momentum theorem | \sum F\Delta t=p_{f}-p_{0} | when a net force acts on an object, the impulse force is equal to the change in the momentum | |
Principle of conservation of linear momentum | p_{f}=p_{0} | ||
Collisions in 1D | p_{f1}+p_{f2}=p_{01}+p_{02} | ||
Collisions in 2D | p_{f1?}+p_{f2?}=p_{01?}+p_{02?} | ? means x or y | |
Center of mass (CoM) | x_{cm}=\dfrac{m_{1}x_{1}+m_{2}x_{2}}{m_{1}+m_{2}} | ||
Velocity of CoM | v_{cm}=\dfrac{m_{1}v_{1}+m_{2}v_{2}}{m_{1}+m_{2}} | ||
Angular displacement | \Delta \theta =\theta -\theta _{0} | ||
Angular displacement in radians | \theta =\dfrac{s}{r} | ||
Arc length | s=r\theta | ||
Full revolution | 2\pi rad=360° | ||
Angular velocity | \overline{\omega }=\dfrac{\Delta \theta }{\Delta t} | ||
Angular acceleration | \overline{\alpha }=\dfrac{\Delta \omega }{\Delta t} | ||
Rotational kinematics | \omega =\omega _{0}+\alpha t \theta =\dfrac{1}{2}\left( \omega _{0}+\omega \right) t \theta =\omega _{0}t+\dfrac{1}{2}\alpha t^{2} \omega ^{2}=\omega _{0}^{2}+2\alpha \theta | ||
Tangential velocity | v_{T}=r\omega | ||
Tangential acceleration | a_{T}=r\alpha | ||
Centripetal acceleration | a_{c}=r\omega ^{2} | ||
Pythagorean theorem (acceleration) | \overrightarrow{a}=\sqrt{\overrightarrow{a}_{c}^{2}+\overrightarrow{a_{T}}^{2}} | ||
Translational velocity | v=rw | ||
Translational acceleration | a=r\alpha | ||
Torque | \tau =Fl | ||
Equilibrium conditions | \Sigma F_{x}=0 \Sigma F_{y}=0 \Sigma \tau =0 | ||
Center of gravity | x_{cg}=\dfrac{W_{1}x_{1}+W_{2}x_{2}}{W_{1}+W_{2}} | ||
Tangential force | F_{T}=ma_{T} w/ sub \tau =\left( mr^{2}\right) \alpha | ||
Inertia | I=mr^{2} | ||
Moment of inertia | \Sigma \tau=\sum \left( mr^{2}\right) \alpha \tau1+\tau2+\tau3 | ||
Net external force | \Sigma \tau =I\alpha | ||
Rotational work | W_{R}=\tau \theta | ||
Rotational KE | KE_{R}=\dfrac{1}{2}I\omega ^{2} | ||
Total KE | KE_{tota1}=\dfrac{1}{2}I\omega ^{2}+\dfrac{1}{2}mv_{T}^{2} | ||
Mechanical energy of a rotating object | E=\dfrac{1}{2}mv^{2}+\dfrac{1}{2}I\omega ^{2}+mgh | Energy conservation: E_{f}=E_{0} | |
Angular momentum | L=I\omega | ||
Mass density | \rho =\dfrac{m}{V} | ||
Pressure | P=\dfrac{F}{A} | ||
Pressure and depth in static fluid | P_{2}=P_{1}+\rho gh | ||
Pressure gauges | P_{atm}=\rho gh | ||
Archimede’s principle | F_{B}=\rho Vg | buoyant force = mass of displaced fluid | |
Linear thermal expansion | \Delta L=\alpha L_{0}\Delta T | ||
Volume thermal expansion | \Delta V=\beta V_{0}\Delta T | ||
Specific heat capacity | Q=mc\Delta T | ||
Latent heat | Q=mL | ||
Restoring force produced by a spring | F_{x}=kx | ||
Hooke’s law | F_{x}=-kx | ||
displacement | x=A\cos \omega t | ||
Frequency | f=\dfrac{1}{T} | ||
Angular frequency | \omega =2\pi f or \omega =\sqrt{\dfrac{k}{m}} | ||
Max speed (shm) | v_{max}=Aw | ||
Max acceleration (shm) | a_{max}=Aw^{2} | ||
Work done by spring | W=\left( F\cos \theta \right) s W=\dfrac{1}{2}kx_{0}^{2}-\dfrac{1}{2}kx_{f}^{2} | ||
Mechanical energy | insert | ||
PE elastic | \dfrac{1}{2}kx^{2} |
\sin \theta =\dfrac{o}{h}
\cos \theta =\dfrac{a}{h}
\tan \theta =\dfrac{o}{a}
\theta =\sin ^{-1}\left( \dfrac{o}{h}\right)
\theta =\cos ^{-1}\left( \dfrac{a}{h}\right)
\theta =\tan ^{-1}\left( \dfrac{o}{a}\right)
h^{2}=o^{2}+a^{2}
R^{2}=A^{2}+B^{2}