Indefinite Integrals of Trigonometric Functions Notes
Indefinite Integrals of Trigonometric Functions
Basic Trigonometric Derivatives and Corresponding Indefinite Integrals
Sine and Cosine
Derivative:
- ( \frac{d}{dx} (\sin x) = \cos x )
- ( \frac{d}{dx} (\cos x) = -\sin x )
Indefinite Integrals:
- ( \int \cos x \, dx = \sin x + C )
- ( \int -\sin x \, dx = \cos x + C )
Tangent and Secant
Derivative:
- ( \frac{d}{dx} (\tan x) = \sec^2 x )
- ( \frac{d}{dx} (\sec x) = \sec x \tan x )
Indefinite Integrals:
- ( \int \sec^2 x \, dx = \tan x + C )
- ( \int \sec x \tan x \, dx = \sec x + C )
Cosecant and Cotangent
Derivative:
- ( \frac{d}{dx} (\csc x) = -\csc x \cot x )
- ( \frac{d}{dx} (\cot x) = -\csc^2 x )
Indefinite Integrals:
- ( \int -\csc x \cot x \, dx = \csc x + C )
- ( \int -\csc^2 x \, dx = \cot x + C )
Example Problems
Example No. 1
- Given:
( \int (5\sin x - 2\cos x) \, dx ) - Solution:
- Break down into two integrals:
- ( \int 5\sin x \, dx - \int 2\cos x \, dx )
- Evaluate:
- ( 5(-\cos x) + C1 - 2(\sin x) + C2 )
- Combine constants:
- Result:
( -5\cos x - 2\sin x + C )
Example No. 2
- Given:
( \int (\sec^2 x - \csc^2 x) \, dx ) - Solution:
- Integrate each term:
- ( \int \sec^2 x \, dx + \int -\csc^2 x \, dx )
- Evaluate:
- ( \tan x + C1 + \cot x + C2 )
- Combine constants:
- Result:
( \tan x + \cot x + C )
Example No. 3
- Given:
( \int -4\sin x \, dx ) - Solution:
- Evaluate:
- Simplified Result:
( 4\cos x + C )
Example No. 4
- Given:
( \int 8\sec^2 x \, dx ) - Solution:
- Evaluate:
Example No. 5
- Given:
( \int -5\csc x \cot x \, dx ) - Suggestion:
- Utilize known derivative relationship for cosecant and cotangent.