Organic Synthesis Flashcards

How to design production methods with less waste? (2) What is the benefit of this? (3) 

Use a method with: 

  • Fewer steps 

  • Higher % atom economy  

Less waste, less production time, less energy used, more efficient 

 

Why are solvents avoided in developing synthetic routes? (5) 

Solvents are flammable, toxic, increase waste 

Avoiding solvents makes process safer, reduces environmental impact 

Alkene to alkane  

H2 , Ni catalyst, 150°C 

Alkene to haloalkane 

Electrophilic addition  

HX + 20 °C 

Alkane to haloalkane 

Free radical substitution,  

UV light, X2 

Initiation, propagation, termination 

Haloalkane to alkene  

Elimination 

KOH, ethanol, reflux 

Alcohol to haloalkane 

Nucleophilic substitution, NaX, concentrated H2SO4, 20°C 

Haloalkane to alcohol  

Nucleophilic substitution, NaOH, warm, H2O, reflux 

Alkene to dihaloalkane  

Electrophilic substitution, X2 20°C 

Alcohol to aldehyde  

Oxidation  

Distillation, warm the primary alcohol, acidified potassium dichromate  

Aldehyde to alcohol 

Reduction 

NaBH4 in methanol and water 

Alcohol to alkene  

Elimination 

Concentrated phosphoric acid catalyst, heat 

Alkene to alcohol  

Hydration of alkenes – electrophilic addition 

STEAM, phosphoric acid catalyst,  

60atm, 300°C 

Alcohol to ketone  

Secondary alcohol, acidified potassium dichromate, reflux + heat 

Aldehyde to carboxylic acid  

Reflux, acidified potassium dichromate  

Ketone to alcohol  

Reduction 

NaBH4  

In methanol and water  

Aldehyde/ketone to hydroxynitrile  

Nucleophilic addition  

KCN, H2SO4, 20°C 

N.B. enantiomers may form, as CN can attack from above or below the double bond, as C=O bond is planar  

 

Acid chloride/anhydride to Carboxylic acid 

 

Nucleophilic addition-elimination 

Water, 20°C 

Acid chloride/anhydride to ester 

Alcohol, 20 °C 

Acid chloride/anhydride to primary amide 

Ammonia 20°C 

Acid chloride/anhydride to N-substituted amide 

Amine at 20°C 

Ester to carboxylic acid  

Dilute H2SO4, water (ester hydrolysis), reflux and catalyst or dilute NaOH and reflux. 

Haloalkane to nitrile  

Nucleophilic substitution  

KCN, ethanol, reflux  

 

Haloalkane to primary amine  

Excess ammonia,  

(nucleophilic substitution) 

Haloalkane to secondary or tertiary amines and quaternary ammonium squares  

NH3 and heat!!! 

Carboxylic acid to ester 

Alcohol, concentrated H2SO4 catalyst 

Heat  

Nitrile to primary amine  

LiAlH4 reducing agent 

And dilute h2so4 

NITRILE IS REDUCED! 

Nitrobenzene to phenylamine  

Sn, CONCENTRATED HCl, reflux, add NaOH (this removes H from NH3+ making it NH2) 

REDUCTION OF NITROBENZENE 

Benzene to nitrobenzene  

Concentrated h2so4 (catalyst), hno3 (acts a base), 

ELECTROPHILIC SUBSTITUTION  

<55°C (prevents more NO2 groups being substituted) 

Phenylamine to N-phenyl ethanamide 

Ethanoyl chloride  

Room temperature 298K 

ACYLATION  

Benzene to phenyl ketone  

Friedel crafts acylation  

RCOCL e.g. Ethanoyl chloride, AlCl3 catalyst  

Reflux, anhydrous conditions  

Ether functional group  

ROR’ 

 

Ketone functional group  

RC=OR’ 

Acid anhydride functional group  

RC=OOC=OR’ 

 

Acyl halide functional group  

RC=OX  

/

robot