BG

Advanced Exercise Physiology – Cardiovascular Physiology (Lecture 1)

Overview of the Cardiovascular (CV) System

Components
  • Heart – pump (≈300–350 g; consumes ≈10 % of resting O₂)

  • Vasculature – arteries, arterioles, capillaries, venules, veins

  • Blood – formed elements (≈40 %) + plasma (≈60 %)

Core Functions
  1. Transport – O₂, CO₂, nutrients, wastes, hormones

  2. Homeostatic regulation – fluid balance, BP, pH, thermoregulation (heat transfer via blood)

  3. Protection – hemostasis (clotting), immune defense, blood-flow prioritization during loss

Pulmonary vs Systemic Circulation
  • Right heart (pulmonary): pumps de-oxygenated blood → lungs → picks up O₂

  • Left heart (systemic): pumps oxygenated blood → entire body


Heart Anatomy & Blood Flow (Right → Left)

  1. SVC / IVC → Right Atrium (RA)

  2. Tricuspid Valve (Right AV) – prevents RA⇆RV backflow

  3. Right Ventricle (RV)

  4. Pulmonary Semilunar Valve → Pulmonary Artery → Lungs

  5. Pulmonary Veins → Left Atrium (LA)

  6. Bicuspid / Mitral Valve (Left AV)

  7. Left Ventricle (LV) – thickest wall (~3× RV); systemic pump

  8. Aortic Semilunar Valve → Aorta → Arterial tree → Capillaries → Veins → (step 1)

  • Valves = one-way; disease/leakage alters preload/afterload

  • Coronary arteries/veins nourish myocardium (critical in MI)


Cardiac Output (CO / Q̇)

  • Definition: volume ejected per minute

  • Formula: Q = HR \times SV

  • Typical resting values:

    • HR_{rest}\approx 60–80\;\text{b·min}^{-1}

    • SV_{rest}\approx 60–80\;\text{mL·beat}^{-1}

    • Q_{rest}\approx 5\;\text{L·min}^{-1} (♀ slightly lower, ♂ higher)

  • Exercise increase: Q_{max}\approx 20–25\;\text{L·min}^{-1} (untrained) → 40+\;\text{L·min}^{-1} (elite endurance)

  • Age sets max HR; training mainly augments SV


Blood Vessel Types & Hemodynamics

Structural Layers (inside→out)
  1. Endothelium (tunica intima)

  2. Smooth muscle (tunica media) – thicker in arteries ⇒ vaso-control

  3. Fibrous/elastic connective (tunica adventitia)

Classification
  • Elastic (central) arteries – Aorta, iliacs; Windkessel effect dampens pulsatility

  • Muscular arteries – named regionals (ulnar, femoral); rich smooth muscle; main site of exercise redistribution

  • Arteriolesresistance vessels; greatest pressure drop; SNS & local metabolites dictate dilation/constriction

  • Capillaries – single-cell wall; huge cross-sectional area; slow flow for gas exchange; vulnerable to HTN damage

  • Venules / Veinscapacitance vessels (≈60 % blood volume at rest); thin wall, valves, low pressure (≈10–30 mmHg); venous return aided by:

    • Skeletal muscle pump

    • Respiratory pump

    • Sympathetic venoconstriction

Pressure & Flow Principles
  • Flow follows ΔP / Resistance (Ohm’s law for fluids)

  • Blood flows high → low pressure; valve timing hinges on this fact

  • Windkessel effect: aortic elasticity stores energy during systole, sustains flow in diastole (prevents zero-flow periods)

  • Central (aortic) BP < peripheral (brachial) BP


Blood Composition & Viscosity

  • Formed elements (≈40 %)

    • Erythrocytes – carry O₂ via hemoglobin

    • Leukocytes – immune defense

    • Thrombocytes (platelets) – clotting; contribute to athero-plaque

  • Plasma (≈60 %) – ≈90 % water + proteins, nutrients, hormones

  • Dehydration → ↓plasma → ↑hematocrit → ↑viscosity → ↑resistance → ↑BP & clot risk


Cardiac Cycle (Wiggers Diagram Essentials)

  • Duration at HR 75 b·min⁻¹ ≈ 0.8 s (HR 60 → 1 s)

Phases
  1. Isovolumetric Contraction (IVC) (all valves closed)

    • LV pressure ↑ steeply (≈5 → 80 mmHg)

    • Volume constant (EDV)

  2. Ventricular Ejection

    • Aortic valve opens when P{LV}>P{aorta}

    • Rapid then reduced ejection; volume ↓ to ESV

  3. Isovolumetric Relaxation (IVR)

    • Aortic valve closes when P{aorta}>P{LV} (dicrotic notch)

    • All valves closed; LV pressure ↓ rapidly, volume constant (ESV)

  4. Ventricular Filling

    • Rapid inflow: Mitral valve opens when P{LA}>P{LV}

    • Diastasis: slower passive filling

    • Atrial systole (A-wave; P-wave on ECG): last ~10 % of filling

Key Relationships
  • Valves operate on pressure gradients (no neural trigger)

  • Heart sounds: S₁ = AV valve closure (start systole), S₂ = semilunar closure (start diastole)

  • Stroke Volume: SV = EDV - ESV

  • Ejection Fraction: EF = \dfrac{SV}{EDV}\times100\% (clinical pump metric)

Sample Pressure/Volume Values (approx.)
  • EDV\approx 120\;\text{mL}

  • ESV\approx 50\;\text{mL}

  • SV\approx 70\;\text{mL}

  • P{systolic}\approx 120\;\text{mmHg} ; P{diastolic}\approx 80\;\text{mmHg} (aortic)


Clinical & Exercise Relevance

  • Left Ventricular Hypertrophy (LVH)

    • Physiologic (endurance training) vs pathologic (HTN, valve disease)

  • Blood Pressure refers exclusively to arterial pressure

  • High BP end-organ risk: brain (stroke), heart (MI), kidneys (nephropathy), micro-capillary damage

  • Hydration status directly modifies plasma volume → influences SV and BP

  • Venous return & preload enhanced by active muscle – rationale for cool-down walking

  • Post-prandial exercise: splanchnic vasodilation competes with muscle blood flow → GI discomfort/“swim rule”


  • Master heart diagram; trace flow w/o notes

  • Practice Wiggers diagram interpretation (pressure, volume, ECG, sounds)

  • Use Huff “ECG Workout” rhythm strips for self-quizzing (exam source)

  • Expect lab practical: setup 12-lead ECG and strip interpretation

  • Canvas assignments auto-repeat until 100 %; completion boosts grade

  • Review material nightly—fast-paced term!