Gas Exchange & Respiratory Physiology – Comprehensive Notes
Gas-Exchange Surfaces: General Properties
- Permeability
- Surfaces must allow free diffusion of respiratory gases (O₂ & CO₂)
- Thin epithelial barriers minimize diffusion distance (≈ 0.2$–$0.6\,\mu m in human alveoli)
- Large surface area
- Maximizes total flux (Fick’s Law: \text{Rate}\propto \dfrac{A\,(P1-P2)}{d})
- Human lungs ≈ 70\,m^2 (about a tennis court)
- Moisture
- Gases must dissolve before diffusing through membranes
- Pulmonary surfactant provides thin aqueous film while lowering surface tension
- Thinness
- Single‐cell layers prevent multi-layer diffusion delays
- Distinction of physiological steps
- Ventilation ≈ bulk movement of air in/out of lungs
- Gas exchange ≈ diffusion across respiratory surface into blood
- Cellular respiration ≈ mitochondrial O₂ use & ATP production
Anatomy of the Human Respiratory System
- Upper structures
- Nasal cavity, pharynx, larynx (contains vocal cords)
- Trachea (cartilaginous “C” rings keep airway open)
- Bronchial tree
- Primary (main) bronchi → secondary (lobar) bronchi → tertiary (segmental) bronchi → bronchioles → terminal & respiratory bronchioles → alveolar ducts → alveolar sacs
- Lungs
- Right lung: 3 lobes (superior, middle, inferior)
- Left lung: 2 lobes (superior, inferior) + cardiac notch + lingula
- Hilum: entry/exit of bronchi, arteries, veins, lymphatics
- Pleurae
- Visceral pleura adheres to lung surface
- Parietal pleura lines thoracic cavity & diaphragm
- Pleural cavity (≈ <5\,\text{mL} fluid) creates negative pressure & lubricates
Relationship to the Cardiovascular System
- Pulmonary artery delivers deoxygenated blood from right ventricle
- Pulmonary capillaries envelope each alveolus (≈ 300 million per lung)
- Pulmonary veins return oxygenated blood to left atrium
- Close anatomical proximity reduces diffusion distance for gases
Ventilation Mechanics
- Principle: pressure changes within the thorax (Boyle’s Law P\alpha \dfrac{1}{V})
- Major muscle groups
- Diaphragm (dome-shaped at rest)
• Contraction → flattens → thoracic volume ↑ → intrapulmonary pressure ↓ (air in)
• Relaxation → domes → volume ↓ → pressure ↑ (air out) - External intercostals (inspiration)
• Contract → ribs & sternum lift outward & upward - Internal intercostals + abdominal muscles (forced expiration)
• Contract → ribs depress, abdominal organs push diaphragm upward
- Antagonistic action ensures rhythmic cycle ≈ 12–20 breaths min⁻¹ at rest
Alveolar Structure and Function
- Conducting pathway ends in clusters of alveoli (sacs)
- Each sac comprised of multiple alveoli interconnected by pores (of Kohn) to equalize pressure
- Pneumocytes (alveolar epithelial cells)
- Type I (≈ 95 % surface area)
• Extremely thin & squamous (diffusion barrier ≈ 0.2\,\mu m) - Type II (≈ 5 %) surfactant-secreting, cuboidal
• Produce phospholipoprotein mixture lowering surface tension (Law of Laplace P=\dfrac{2\gamma}{r}; ↓γ prevents collapse at low r)
• Serve as progenitors that can differentiate into type I after injury
- Resident macrophages patrol lumen → phagocytose debris & microbes
Microscopic Gas-Exchange Process
- Diffusion driven by partial-pressure gradients
- Inspired air: P{O2}\approx 13\ kPa; venous blood P{O2}\approx 5\ kPa
- CO₂ gradient reversed (venous P{CO2}\approx 6\ kPa → alveolar 5.3\ kPa → expired 4.7\ kPa)
- Blood–gas barrier layers
- Surfactant film
- Type I pneumocyte membrane & cytoplasm
- Shared basal laminae (fused basement membranes)
- Capillary endothelial cell
- Plasma & erythrocyte membrane
- Total diffusion path ≲ 0.6\,\mu m → extremely fast equilibration (< 0.25 s)
Chemical Transport of CO₂ & O₂ in Blood
- Carbon dioxide (typical venous content ≈ 52\,mL\,100\,mL^{−1} blood)
- \approx 7\% dissolved as CO_2
- \approx 23\% bound to globin chains → carbamino-hemoglobin (HbCO₂)
- \approx 70\% converted in erythrocytes via carbonic anhydrase
CO2 + H2O \leftrightarrow H2CO3 \leftrightarrow HCO3^- + H^+
• Bicarbonate exchanged for Cl^- (Hamburger shift)
• Reaction reversed in lungs; CO2 diffuses into alveoli
- Oxygen transport
- >98\% carried by hemoglobin (Hb) in RBCs: Hb + 4O2 \rightarrow Hb(O2)_4 (oxyhemoglobin)
- Dissolved O2\approx 1.5\% (establishes P{O_2})
Oxygen-Hemoglobin Dissociation Curves
- Sigmoidal shape due to cooperative binding
- Initial O₂ binding ↑ affinity for subsequent molecules (conformational change)
- Normal ranges
- Lung capillaries: P{O2}=10$–$13\,kPa → Hb ≈ 97$–$100\% saturated
- Systemic tissues: P{O2}=5$–$10\,kPa → Hb releases ≈ 20$–$25\% of carried O₂ at rest; more during exercise
- Bohr effect (rightward shift)
- Elevated P{CO2}, ↓pH, ↑temperature, ↑2,3-BPG → ↓affinity (facilitates unloading)
- Expressed mathematically: HbO2 + H^+ \leftrightarrow HHb + O2
- Fetal vs adult hemoglobin
- HbF curve lies left of HbA (higher O₂ affinity) to extract O₂ from maternal circulation
- Graphically: at P{O2}=4\,kPa, HbF ~80\% saturated vs HbA ~60\%
Neural & Chemical Regulation of Ventilation
- Central pattern generator: medulla oblongata (spinal bulb) & pons
- Chemoreceptors
- Central (medullary) respond to [H^+] in cerebrospinal fluid (reflects P{CO2})
- Peripheral (carotid & aortic bodies) respond to P{O2} < 8\,kPa & pH changes
- Reflex arc
- Excess CO_2 / ↓pH detected
- Medulla increases action potential frequency via phrenic & intercostal nerves
- Diaphragm/intercostals contract harder → ventilation ↑
- Blood gases normalize (negative feedback)
Effects of Smoking
- Tar & particulate matter
- Destroy ciliary epithelium → impaired mucociliary clearance (Fig. 10.6)
- Chronic bronchitis: hypersecretion of mucus, narrowed airways
- Emphysema: alveolar wall destruction → ↓surface area, ↓elastic recoil
- Carcinogens (e.g., benzo[a]pyrene) → lung cancer (pages 343-345 reference)
Pulmonary Volumes & Spirometry
- Vital capacity (VC): max air exhaled after max inspiration (~4.5\,L male)
- Inspiratory reserve volume (IRV): extra inspired above tidal (~3\,L)
- Expiratory reserve volume (ERV): extra expired below tidal (~1\,L)
- Residual volume (RV) not in list but implied (~1.2\,L)
- Class activity: design simple water-displacement spirometer & test peer values
Plant Gas-Exchange Adaptations (Leaves)
- Cross-section anatomy
- Upper epidermis (cuticle reduces water loss)
- Palisade mesophyll: tightly packed, rich in chloroplasts, major site of photosynthesis
- Spongy mesophyll: loose, interconnected air spaces facilitate diffusion of gases
- Vascular bundles: xylem (water up), phloem (sugars down/up)
- Stomatal apparatus
- Two guard cells flank pore
• High turgor (K⁺ influx → water follows) → stomata open
• Low turgor → close - Aperture ≈ 20\,\mu m wide when fully open
- Regulate transpiration & CO₂ uptake
Summary of Alveolar Adaptations (Page 14 Table)
- Spherical geometry → maximal surface-to-volume ratio
- Single flattened cell layer → minimal diffusion path
- Moist internal lining → dissolves gases for diffusion
- Dense capillary network in immediate contact → rapid gas uptake/removal
Key Equations & Numerical Facts (Collected)
- Fick\,Law:\;Rate = \dfrac{A\,D\,(P1-P2)}{d}
- P = \dfrac{2\gamma}{r} (Law of Laplace for alveolar stability)
- Carbonic anhydrase reaction:
CO2 + H2O \leftrightarrow H2CO3 \leftrightarrow HCO_3^- + H^+ - Bohr shift chemical:
HbO2 + H^+ \leftrightarrow HHb + O2 - Average adult breath: ~500\,mL (tidal volume)
- Number of alveoli: ≈ 3\times10^8 per lung
- Surface area: ≈ 70\,m^2; Barrier thickness: 0.2\text{–}0.6\,\mu m
Ethical & Health Relevance
- Smoking cessation reduces risk of COPD & carcinomas; educational campaigns critical
- Premature infants lack surfactant → neonatal respiratory distress syndrome; surfactant replacement therapy saves lives
- Altitude adaptation: ↑2,3-BPG, polycythemia, rightward curve shift; informs athletic training & hypoxia research