Radial dependence ⇒ look for circular level‐sets
• f(x,y)=\frac{1}{1+x^2+y^2}: decays from max at origin; bowl‐shaped surface.
• f(x,y)=\ln(x^2+y^2): \to -\infty at origin, increases outward; deep pit.
• f(x,y)=\cos\sqrt{x^2+y^2}: concentric ripples (radial cosine).
Product dependence ⇒ saddle patterns
• f(x,y)=|xy|: "tent" rising in all four quadrants.
• f(x,y)=\cos(xy): alternating ridges/valleys along hyperbolas.
Limit exists at (a,b) if \lim_{(x,y)\to(a,b)}f(x,y)=L along every path.
Continuity at (a,b) when limit equals f(a,b).
Standard functions (polynomials, trig, exp, log) ⇒ continuous on domains.
If \lim f=L and \lim g=G then
\lim(kf)=kL,
\lim(f\pm g)=L\pm G,
\lim(fg)=LG,
\lim\dfrac{f}{g}=\dfrac{L}{G} (when G\neq0).
Try special paths: y=0, x=0, y=mx, x=y^2, etc.
Different limits along two paths ⇒ limit DNE.
If f\le g\le h and \lim f=\lim h=L then \lim g=L.
Verify limit from all directions equals the defined value at junction point.
Failure of limit ⇒ discontinuity, even if value is assigned.
fx(a,b)=\displaystyle\lim{h\to0}\dfrac{f(a+h,b)-f(a,b)}{h} (treat y constant).
fy(a,b)=\displaystyle\lim{h\to0}\dfrac{f(a,b+h)-f(a,b)}{h}.
Compute by ordinary rules, holding other variables fixed.
Example: g(x,y)=xe^{x-y}
g_x=(1+x)e^{x-y}
g_y=-xe^{x-y}
Second partials: f{xx}=\dfrac{\partial^2 f}{\partial x^2}, f{yy}, f{xy}, f{yx}.
Clairaut’s theorem: if second partials are continuous, f{xy}=f{yx}.
At point (a,b):
Slopes: m1=fx(a,b), m2=fy(a,b).
Tangent plane: z=m1x+m2y+d with d=f(a,b)-m1a-m2b.
Linearization (approximation near (a,b)):
L(x,y)=f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b).
Total differential: dz=fx\,dx+fy\,dy.
Use |dz| to estimate absolute error when dx,dy are measurement tolerances.
Example (cylinder V=\pi r^2h): dV=2\pi rh\,dr+\pi r^2\,dh.
For z=f(x,y),\;x=g(t),\;y=h(t):
\dfrac{dz}{dt}=fx\,\dfrac{dx}{dt}+fy\,\dfrac{dy}{dt}.
Equivalent to substituting total differential with dependent variables.