Lecture 3 - Propositional Logic Laws
Tautology and Contradiction
- A tautology is a compound proposition that is always true.
- A contradiction is a compound proposition that is always false.
- Truth table basics:
- If a proposition evaluates to true for all possible truth assignments, it is a tautology.
- If a proposition evaluates to false for all possible truth assignments, it is a contradiction.
- Example truth table (from transcript):
- Columns: p, ¬p, p ∨ ¬p, p ∧ ¬p
- Rows:
- p = T, ¬p = F → p ∨ ¬p = T, p ∧ ¬p = F
- p = F, ¬p = T → p ∨ ¬p = T, p ∧ ¬p = F
- Conclusion: p o
eg p is not the focus here; rather, p \u2228
eg p is always true, and p \u2227
eg p is always false.
- Summary relationships:
- p \lor \neg p \equiv \top (Law of excluded middle in this context)
- p \land \neg p \equiv \bot
Truth-table-based example: (p → q) ∨ p
- We can determine tautology/contingency by evaluating the expression under all combinations of p and q.
- Expression: (p \rightarrow q) \lor p
- Using the truth table:
- p = T, q = T: p → q = T; (p → q) ∨ p = T
- p = T, q = F: p → q = F; (p → q) ∨ p = T
- p = F, q = T: p → q = T; (p → q) ∨ p = T
- p = F, q = F: p → q = T; (p → q) ∨ p = T
- Since the value is always true, the expression is a tautology.
Logical Equivalences
- Two compound propositions p and q are logically equivalent if they always have the same truth value.
- Denoted as: p \equiv q or sometimes p \Leftrightarrow q.
- Significance:
- Enables replacing a subformula with an equivalent one to simplify expressions or prove properties (tautology/contradiction/equivalence).
- Example from transcript:
- Prove that \boldsymbol{\diameter} p \lor q (interpreted as a certain expression in transcript) is equivalent to p \to q by comparing truth tables across all assignments.
- Truth table shows: for all assignments, the two expressions have identical truth values, so they are logically equivalent.
Example: Prove the equivalence Øp Ú q ≡ p → q
- Given truth table (p, q, ¬p, ¬p ∨ q, p → q):
- p q | ¬p | ¬p ∨ q | p → q
- T T | F | T | T
- T F | F | F | F
- F T | T | T | T
- F F | T | T | T
- Observation: The column for ¬p ∨ q matches p → q in every row.
- Conclusion: Øp Ú q is logically equivalent to p → q (as per transcript's notation and truth table).
- Note: In the transcript, "Øp Ú q" is presented in a way that aligns with ¬p ∨ q; the key takeaway is that the two expressions share identical truth values across all possible p, q.
Laws of Propositional Logic
- Purpose: Provide a toolkit to simplify propositions, prove logical equivalence, tautology, or contradiction.
- Common laws (Expression 1 ↔ Expression 2):
- Idempotent laws:
- p \lor p \equiv p
- p \land p \equiv p
- Associative laws:
- (p \lor q) \lor r \equiv p \lor (q \lor r)
- (p \land q) \land r \equiv p \land (q \land r)
- Commutative laws:
- p \lor q \equiv q \lor p
- p \land q \equiv q \land p
- Distributive laws:
- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)
- p \land (q \lor r) \equiv (p \land q) \lor (p \land r)
- Identity laws:
- p \lor \bot \equiv p
- p \land \top \equiv p
- Domination laws:
- p \lor \top \equiv \top
- p \land \bot \equiv \bot
- Double negation law:
- \neg\neg p \equiv p
- Complement laws (the principle of excluded middle and contradiction):
- p \lor \neg p \equiv \top
- p \land \neg p \equiv \bot
- De Morgan’s laws:
- \neg(p \lor q) \equiv \neg p \land \neg q
- \neg(p \land q) \equiv \neg p \lor \neg q
- Absorption laws:
- p \lor (p \land q) \equiv p
- p \land (p \lor q) \equiv p
- Conditional identities:
- p \rightarrow q \equiv \neg p \lor q
- Biconditional: (optional from transcript discussion)
- p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)
How to use the laws
- Purpose: Use the laws to simplify a compound proposition, and to prove logical equivalence, tautology, or contradiction.
- Rules of thumb:
- Remove a biconditional (↔) by applying the conditional identity: p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p) and/or transform implications.
- Remove implications (→) by using the identity: p \rightarrow q \equiv \neg p \lor q .
- Apply De Morgan’s laws to move a negation inside: \neg(p \lor q) \equiv \neg p \land \neg q and \neg(p \land q) \equiv \neg p \lor \neg q .
- Apply other laws (idempotent, associative, commutative, distributive, etc.) as needed to reach the desired form (e.g., a tautology, contradiction, or a simpler equivalent expression).
Example: Prove p ∨ (p → q) is a tautology
- Target: Prove p \lor (p \rightarrow q) is a tautology.
- Steps:
- Use conditional identity: p \rightarrow q \equiv \neg p \lor q
- Then p \lor (\neg p \lor q)
- By associativity: (p \lor \neg p) \lor q
- By complement law: \top \lor q
- By domination law: \top
- Conclusion: p \lor (p \rightarrow q) is a tautology.
Example: Prove ¬p → (q → r) ≡ q → (p ∨ r)
- Target: Show \neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)
- Steps (as in transcript):
- Start with left: \neg p \rightarrow (q \rightarrow r)
- Apply conditional identity: \neg p \rightarrow (q \rightarrow r) \equiv p \lor (q \rightarrow r)
- Replace inner implication: p \lor (\neg q \lor r)
- Reassess with associativity/commutativity to form (\neg q \lor p) \lor r or equivalently \neg q \lor (p \lor r)
- Recognize that q \rightarrow (p \lor r) \equiv \neg q \lor (p \lor r)
- Therefore: \neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)
- Note: This derivation aligns with the transcript’s final equivalence and uses standard transformation steps.
Connections to foundational principles
- These topics underpin boolean algebra, digital logic design, and automated theorem proving.
- Logical equivalence, tautology, and contradiction form the basis for simplifying expressions and for proving properties about logical systems.
- The laws provide a finite and systematic toolkit to transform and reason about propositional formulas.
Practical implications and context
- In computer science, these concepts underpin circuit design, compiler optimizations, and verification; proving a circuit is a tautology corresponds to showing it always outputs true.
- In mathematics, logical equivalences enable proving theorems via rewrite rules.
- In philosophy, these ideas relate to formal epistemology and the study of valid arguments.
- Tautology/Contradiction:
- p \lor \neg p \equiv \top
- p \land \neg p \equiv \bot
- Implication:
- p \rightarrow q \equiv \neg p \lor q
- De Morgan:
- \neg(p \lor q) \equiv \neg p \land \neg q
- \neg(p \land q) \equiv \neg p \lor \neg q
- Identity/Domination:
- p \lor \bot \equiv p
- p \land \top \equiv p
- p \lor \top \equiv \top
- p \land \bot \equiv \bot
- Absorption:
- p \lor (p \land q) \equiv p
- p \land (p \lor q) \equiv p
- Equivalences:
- p \equiv q (logical equivalence)
- p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)
- Example results:
- p \lor (p \rightarrow q) \equiv \top
- \neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)