LS

Average Atomic Mass, Mole & Avogadro’s Number – Key Vocabulary

Atomic-Scale vs. Lab-Scale Masses

  • Chemistry often moves between two “worlds”:
    • Atomic/Molecular scale: masses expressed in unified atomic mass units (u or amu).
    • Human (laboratory) scale: masses we can weigh directly, usually in grams (g) or milligrams (mg).
  • Goal of this lesson: show how to convert atomic-scale information (average atomic mass) to real-world sample masses using Avogadro’s number and the mole concept.

Average (Relative) Atomic Mass — Quick Refresher

  • Average atomic mass is the weighted mean of all naturally occurring isotopes of an element.
    • Lithium example: 6.94\,\text{u per atom}.
  • Tells us the mass per single atom but expressed in units (u) not directly measurable on a lab balance.

Bridging the Scales: Avogadro’s Number (N_A)

  • Definition: N_A = 6.02214076 \times 10^{23}\,\text{entities\,(exact)}.
    • The 2019 SI re-definition fixes this value exactly.
    • Typically rounded to 6.022 \times 10^{23} for routine work.
  • Historical note:
    • Named after Italian chemist Amedeo Avogadro (early 19th century).
  • Key property: If you collect N_A atoms of ANY element, the mass (in grams) numerically equals the element’s average atomic mass (in u).
    • E.g., N_A lithium atoms → 6.94\,\text{g}.

The Mole (mol)

  • Coined by German chemist Wilhelm Ostwald (late 19th century); derives from the word “molecule.”
  • Formal definition: 1 mol of a substance contains exactly N_A specified entities (atoms, molecules, ions, formula units, etc.).
  • Analogy: “dozen” = 12 items → “mole” = 6.022 \times 10^{23} items.
  • Practical impact:
    • Links mass (g)amount (mol)number of particles.

Molar Mass (M)

  • Numerically equal to the element’s average atomic mass but with units \text{g·mol}^{-1}.
    • Germanium example: M_{\text{Ge}} = 72.63\,\text{g·mol}^{-1}.
  • Interpreted as: 1 mol Ge atoms has a mass of 72.63 g.

Worked Example ─ “How many atoms in 15.4 mg of Ge?”

1. Given Data

  • Mass sample: m = 15.4\,\text{mg} germanium (Ge).
  • Wanted: Number of Ge atoms.
  • Constants:
    • M_{\text{Ge}} = 72.63\,\text{g·mol}^{-1} (from periodic table).
    • N_A = 6.022 \times 10^{23}\,\text{atoms·mol}^{-1}.

2. Dimensional-Analysis Roadmap

\text{mg Ge} \xrightarrow{\div1000} \text{g Ge} \xrightarrow{\div M} \text{mol Ge} \xrightarrow{\times N_A} \text{atoms Ge}

3. Step-by-Step

  • Convert mg → g:
    15.4\,\text{mg} \times \frac{1\,\text{g}}{1000\,\text{mg}} = 0.0154\,\text{g}
  • Convert g → mol:
    0.0154\,\text{g} \times \frac{1\,\text{mol}}{72.63\,\text{g}} = 2.12 \times 10^{-4}\,\text{mol}
  • Convert mol → atoms:
    2.12 \times 10^{-4}\,\text{mol} \times 6.022 \times 10^{23}\,\frac{\text{atoms}}{\text{mol}} = 1.28 \times 10^{20}\,\text{atoms}
  • Answer (3 sig figs): 1.28 \times 10^{20}\,\text{Ge atoms}.

4. Unit Cancellations (Symbolic)

15.4\,\cancel{\text{mg}} \times \frac{1\,\text{g}}{1000\,\cancel{\text{mg}}} \times \frac{1\,\text{mol}}{72.63\,\cancel{\text{g}}} \times 6.022\times10^{23}\,\frac{\text{atoms}}{\cancel{\text{mol}}}
= 1.28 \times 10^{20}\,\text{atoms}

5. Calculator Tip

  • Use the scientific notation key (often “EE” or “EXP”) to enter 6.022E23.
  • Maintain intermediate figures to avoid rounding error; round only at final result.

6. Significant-Figures Justification

  • 15.4\,\text{mg} → 3 sig figs (limiting factor).
  • 72.63\,\text{g·mol}^{-1} and N_A provided to 4+ sig figs, so keep 3 in final answer.

Conceptual Connections & Insights

  • Scalability: The mole concept lets chemists design experiments on tangible masses yet know exactly how many particles react.
  • Analogy Reinforcement: Converting “mol → atoms” mirrors “dozens → individual items.”
  • Universality: N_A applies to atoms, molecules, ions, photons—any defined entity.
  • Historical/Practical Impact: Standardization of N_A (2019 SI) ensures all labs worldwide agree on what “1 mol” means.
  • Real-World Relevance: Precise dosing in pharmaceuticals, semiconductor manufacturing (Ge wafers), and stoichiometry in industrial synthesis all depend on mole-based calculations.

Key Takeaways

  • Average atomic mass (u) translates directly to molar mass (g·mol⁻¹).
  • 1 mol6.02214076 \times 10^{23} entities.
  • Dimensional analysis systematically links mass ↔ moles ↔ particles; always ensure units cancel logically.
  • Keep track of significant figures; the least precise measurement dictates final precision.
  • Calculators’ scientific-notation features are essential for handling Avogadro-scale numbers.