0.0(0)
knowt logo

Section 2-4

Principle of Mathematical Induction (PMI)

  • Definition: The principle of mathematical induction is a method for proving statements about natural numbers.

  • Basic Structure:

    • Let S' be a subset of N such that:

      1. 1 ∈ S'

      2. If n ∈ S', then n + 1 ∈ S'.

    • Then S' = N, meaning all natural numbers are included.

Inductive Definitions

  • Definition: Inductive definitions define objects for each n ∈ N as follows:

    1. Describe the first object (base case).

    2. Define the (n + 1)th object in terms of the nth object (inductive step).

  • Hence, these objects are defined for all n ∈ N.

Examples of Inductive Definitions

  • Example 1.2: Terminal Sigma notation

    • Base: [ S(1) = 1 ]

    • Induction: [ S(n) = S(n-1) + n ]

  • Example 1.3: Product defined as [ P(n) = n ]

    • Base: [ P(1) = 1 ]

    • Induction: [ P(n + 1) = (n + 1) \cdot P(n) ]

  • Example 1.4: Factorial [ n! ]

    • Base: [ 1! = 1 ]

    • Induction: [ (n + 1)! = (n + 1) , n! ]

Proofs by Mathematical Induction

  • General Approach:

    1. Base Case: Prove the statement for n = 1.

    2. Inductive Step: Assume that the statement holds for n.

      • Prove that it also holds for n + 1.

  • Example: Prove [ orall n ext{ in } N, P(n) ] is true.

    • Basis: Show that [ P(1) ] is true.

    • Inductive Step: Assume [ P(n) ] is true; prove [ P(n + 1) ] is true.

Example Problems

  1. Example 1.5: Prove [ (2n - 1) = 1 + 3 + 5 + ... + (2n - 1) = n^2 ]

    • Base Case: For n = 1, [ 1 = 1^2 ] is true.

    • Inductive Step: Assume true for n, prove for n + 1.

  2. Example 1.6: Prove [ ext{Product of odds: } orall n: II (2i - 1) = 2n. ]

    • Basis. Step:[ (2i - 1) = 1 ]

    • Induction: Assume true for n, prove for n + 1.

  3. Example 1.7: Show [ n^3 + 5n + 6 \text{ is divisible by 3 for all n ∈ N.} ]

    • Basis: For n = 1, [ 1^3 + 5(1) + 6 = 12, ] is true.

    • Induction: Assume true for n, show it for n + 1.

  4. Example 1.8: Prove [ 3n > 1 + 2n \forall n ext{ in } N. ]

    • Basis: For n = 1, [ 3 > 3 ] is true.

    • Induction: Assume for n; show for n + 1.

Generalized Mathematical Induction

  • Example 1.9: Prove [ 2^n > n^2 \forall n > 4 ] using PMI.

    • Basis: Show true for n=5.

    • Inductive Hypothesis: Assume true for n, prove for n + 1.

Conclusion

  • The principle of mathematical induction is a powerful technique for proving a wide range of statements about natural numbers, leveraging both base cases and inductive steps to establish the validity of assertions for all natural numbers.

خطوات حل المسائل في هذا الدرس:

  1. قراءة المسألة: ابدأ بقراءة المسألة بتمعن لفهم جميع التفاصيل المعطاة.

  2. تحديد المطلوب: حدد ما يُطلب منك في المسألة بدقة.

  3. تجميع المعطيات: قم بتدوين جميع المعطيات المتاحة في المسألة.

  4. تخطيط الحل: ضع خطة للحل تتضمن الخطوات اللازمة التي ستتبعها.

  5. تطبيق القوانين: استخدم القوانين أو المبادئ المناسبة لحل المسألة.

  6. التحقق من الحل: بعد الوصول إلى الحل، تحقق من صحته من خلال العودة إلى المسألة الأصلية.

AA

Section 2-4

Principle of Mathematical Induction (PMI)

  • Definition: The principle of mathematical induction is a method for proving statements about natural numbers.

  • Basic Structure:

    • Let S' be a subset of N such that:

      1. 1 ∈ S'

      2. If n ∈ S', then n + 1 ∈ S'.

    • Then S' = N, meaning all natural numbers are included.

Inductive Definitions

  • Definition: Inductive definitions define objects for each n ∈ N as follows:

    1. Describe the first object (base case).

    2. Define the (n + 1)th object in terms of the nth object (inductive step).

  • Hence, these objects are defined for all n ∈ N.

Examples of Inductive Definitions

  • Example 1.2: Terminal Sigma notation

    • Base: [ S(1) = 1 ]

    • Induction: [ S(n) = S(n-1) + n ]

  • Example 1.3: Product defined as [ P(n) = n ]

    • Base: [ P(1) = 1 ]

    • Induction: [ P(n + 1) = (n + 1) \cdot P(n) ]

  • Example 1.4: Factorial [ n! ]

    • Base: [ 1! = 1 ]

    • Induction: [ (n + 1)! = (n + 1) , n! ]

Proofs by Mathematical Induction

  • General Approach:

    1. Base Case: Prove the statement for n = 1.

    2. Inductive Step: Assume that the statement holds for n.

      • Prove that it also holds for n + 1.

  • Example: Prove [ orall n ext{ in } N, P(n) ] is true.

    • Basis: Show that [ P(1) ] is true.

    • Inductive Step: Assume [ P(n) ] is true; prove [ P(n + 1) ] is true.

Example Problems

  1. Example 1.5: Prove [ (2n - 1) = 1 + 3 + 5 + ... + (2n - 1) = n^2 ]

    • Base Case: For n = 1, [ 1 = 1^2 ] is true.

    • Inductive Step: Assume true for n, prove for n + 1.

  2. Example 1.6: Prove [ ext{Product of odds: } orall n: II (2i - 1) = 2n. ]

    • Basis. Step:[ (2i - 1) = 1 ]

    • Induction: Assume true for n, prove for n + 1.

  3. Example 1.7: Show [ n^3 + 5n + 6 \text{ is divisible by 3 for all n ∈ N.} ]

    • Basis: For n = 1, [ 1^3 + 5(1) + 6 = 12, ] is true.

    • Induction: Assume true for n, show it for n + 1.

  4. Example 1.8: Prove [ 3n > 1 + 2n \forall n ext{ in } N. ]

    • Basis: For n = 1, [ 3 > 3 ] is true.

    • Induction: Assume for n; show for n + 1.

Generalized Mathematical Induction

  • Example 1.9: Prove [ 2^n > n^2 \forall n > 4 ] using PMI.

    • Basis: Show true for n=5.

    • Inductive Hypothesis: Assume true for n, prove for n + 1.

Conclusion

  • The principle of mathematical induction is a powerful technique for proving a wide range of statements about natural numbers, leveraging both base cases and inductive steps to establish the validity of assertions for all natural numbers.

خطوات حل المسائل في هذا الدرس:

  1. قراءة المسألة: ابدأ بقراءة المسألة بتمعن لفهم جميع التفاصيل المعطاة.

  2. تحديد المطلوب: حدد ما يُطلب منك في المسألة بدقة.

  3. تجميع المعطيات: قم بتدوين جميع المعطيات المتاحة في المسألة.

  4. تخطيط الحل: ضع خطة للحل تتضمن الخطوات اللازمة التي ستتبعها.

  5. تطبيق القوانين: استخدم القوانين أو المبادئ المناسبة لحل المسألة.

  6. التحقق من الحل: بعد الوصول إلى الحل، تحقق من صحته من خلال العودة إلى المسألة الأصلية.

0.0(0)
robot