DT

Exam Revision Notes

      • Revision Week - Questions and Topics

        • Revision week, focusing on addressing questions and topics.

        • Friday will cover questions from class; filter circuits were previously discussed with Kane.

        • Inquiries about assignments, labs, or course content are welcome.

        Delta Star Questions: Three-Phase Circuits

        • Basic level questions on Delta Star configurations.

        • Problem: Determine three line currents in a delta-connected load.

        • Circuit Configuration:

          • Delta connection with points labeled A, B, C (capital letters) and a, b, c (small letters).

          • Impedances: Z{ac}, Z{ba}, Z_{cb}.

          • Lines: A, B, C.

        • Given Impedances:

          • Z_{ac} = 60 \Omega \angle 0^{\circ}

          • Z_{cb} = 30 \Omega \angle -30^{\circ}

          • Z_{ba} = 30 \Omega \angle 45^{\circ}

        • Voltages (Phase):

          • E_{ab} = 120 V \angle 0^{\circ}

          • E_{bc} = 120 V \angle -120^{\circ}

          • E_{ca} = 120 V \angle 120^{\circ}

        • Delta Connection Relationship:

          • V{line} = V{phase}

          • I{line} = \sqrt{3} \times I{phase}

        • Calculating Phase Currents:

          • I{ac} = \frac{V{ac}}{Z_{ac}}

          • I{cb} = \frac{V{cb}}{Z_{cb}}

          • I{ba} = \frac{V{ba}}{Z_{ba}}

        • Calculations:

          • I_{ac} = \frac{120 \angle 0^{\circ}}{60 \angle 0^{\circ}} = 2 A \angle 0^{\circ}

          • I_{cb} = \frac{120 \angle 120^{\circ}}{30 \angle -30^{\circ}} = 4 A \angle 150^{\circ}

          • I_{ba} = \frac{120 \angle -120^{\circ}}{30 \angle 45^{\circ}} = 4 A \angle -165^{\circ}

        Line Currents and Phasor Diagram

        • Line currents are different from phase currents.

        • Ia = Iac - Iba

        • Ib = Iba - Icb

        • Ic = Icb - Iac

        • Convert polar to rectangular, perform subtraction, then convert back to polar form.

          • Example of calculating Ia:

            • I_a = 2.0 \angle 0^{\circ} - 4 \angle -165^{\circ}

            • Convert to rectangular: 2 + j0 - (-3.864 - j1.035) = 5.864 + j1.035

            • Convert back to polar: 6 A \angle 10^{\circ}

        • Ib = 3.1 A at -98 degrees.

        • Ic = 6 A at 160 degrees.

        • Unbalanced Load: Different loads result in different currents.

        Wye (Y) Connection Running a Delta-Connected Load

        • Balanced load with impedance Z = 52 \Omega \angle 45^{\circ} in each arm of the delta.

        • Y-connected source:

          • Voltage: 120V (RMS) or 208V (peak).

        • Objective: Find the magnitude of the current in each coil of the source.

        • Calculations:

          • I{ac} = I{cb} = I_{ba} = \frac{208 V}{52 \Omega} = 4 A

          • I{line} = \sqrt{3} \times I{peak} = 1.732 \times 4 A = 6.93 A

        Total Power Calculation

        • Find the total power input to the load.

        • Power factor: \cos(\theta) = \cos(45^{\circ}) = 0.707 lagging (inductive).

        • Total power: Pt = \sqrt{3} \times V{line} \times I_{line} \times \cos(\phi)

          • P_t = 1.732 \times 208 V \times 6.93 A \times 0.707 = 1.8 kW

        Efficiency Example

        • 550V three-phase motor delivers 15 horsepower to a mechanical load.

        • Efficiency: 80% (\frac{P{out}}{P{in}} \times 100).

        • Power factor: 0.9 lagging.

        • Objective: Find the line current.

        • Calculations:

          • Convert horsepower to watts: 1 HP = 746 W

          • Total power input: P_{total} = \frac{15 HP \times 746 W/HP}{0.8} = 14 kW

          • Line current: I{line} = \frac{P{total}}{\sqrt{3} \times V_L \times power factor} = \frac{14000 W}{\sqrt{3} \times 550 V \times 0.9} = 16 A

        Delta Load Example with Different Impedances

        • Impedances:

          • Z_{ab} = 52 \Omega \angle -30^{\circ}

          • Z_{bc} = 52 \Omega \angle 45^{\circ}

          • Z_{ca} = 104 \Omega \angle 0^{\circ}

        • Line voltage: 208V (peak).

        • Objective: Find the magnitude of the current in each line for two phase sequences:

          • ABC

          • CBA

        Sequence ABC

        • Step 1: Calculate phase currents.

          • I{ab} = \frac{V{ab}}{Z_{ab}} = \frac{208 V \angle 0^{\circ}}{52 \Omega \angle -30^{\circ}} = 4 A \angle 30^{\circ}

          • I{bc} = \frac{V{bc}}{Z_{bc}} = \frac{208 V \angle -120^{\circ}}{52 \Omega \angle 45^{\circ}} = 4 A \angle -165^{\circ}

          • I{ca} = \frac{V{ca}}{Z_{ca}} = \frac{208 V \angle 120^{\circ}}{104 \Omega \angle 0^{\circ}} = 2 A \angle 120^{\circ}

        • Step 2: Calculate line currents.

          • Ia = I{ab} - I_{ca} = 4 \angle 30^{\circ} - 2 \angle 120^{\circ} (convert to rectangular, subtract, convert back to polar: 4.64 + j0.268 A

          • Ib = I{bc} - I_{ab} = 4 \angle -165^{\circ} - 4 \angle 30^{\circ}

          • Ic = I{ca} - I_{bc} = 2 \angle 120^{\circ} - 4 \angle -165^{\circ} = 4 A \angle 0^{\circ}

        Sequence CBA

        • I{ab} = \frac{V{ab}}{Z_{ab}} = \frac{208 V \angle 0^{\circ}}{52 \Omega \angle -30^{\circ}} = 4 A \angle 30^{\circ}

        • I{bc} = \frac{V{bc}}{Z_{bc}} = \frac{208 V \angle 0^{\circ}}{52 \Omega \angle 45^{\circ}} = 4 A \angle 75^{\circ}

        • I{ca} = \frac{V{ca}}{Z_{ca}} = \frac{208 V \angle -120^{\circ}}{104 \Omega \angle 0^{\circ}} = 2 A \angle -120^{\circ}

        • Calculate Line Currents:

          • Ia = I{ab} - I_{ca}

          • Ib = I{bc} - I_{ab}

          • Ic = I{ca} - I_{bc}

        Star (Y) Connection: Resistor and Capacitor

        • Components: Resistors (12 ohms) and capacitors (-j9 ohms).

        • Objective: Compute Ia, Ib, and I_c.

        • Given: V_{an} = 120 V \angle 0^{\circ} (RMS, phase voltage).

        • Calculations:

          • Ia = \frac{V{an}}{Z_{an}} = \frac{120 V \angle 0^{\circ}}{12 - j9} = \frac{120 V \angle 0^{\circ}}{15 \angle -36.87^{\circ}} = 8 A \angle 36.87^{\circ}

          • Ib = \frac{V{bn}}{Z_{bn}}

          • Ic = \frac{V{cn}}{Z_{cn}}

        Additional Problems

        • Problem 1: For the same Y-connected circuit:

          • If V{ab} = 600 V \angle 0^{\circ}, what are Ia, Ib, and Ic?

        • Problem 2: For the same Y-connected circuit:

          • If V{bc} = 600 V \angle -120^{\circ}, what are Ia, Ib, and Ic?

        • Answers:

          • Problem 1:

            • I_a = 23.1 A \angle 6.9^{\circ}

            • I_b = 23.1 A \angle -113.1^{\circ}

            • I_c = 23.1 A \angle 126.9^{\circ}

          • Problem 2:

            • I_a = 23.1 A \angle 36.9

            • I_b = 23.1 A \angle -83.1^{\circ}

            • I_c = 23.1 A \angle 156.9^{\circ}

        Delta-Connected Circuit Problems

        • Circuit: Delta connection with resistors and inductors.

        • Values: 10 ohms and j3 ohms.

        • Given: V_{ab} = 240 V \angle 15^{\circ}

        • Objectives:

          • Find phase current (I_{phase}).

          • Find line current (I_{line}).

          • Sketch the phasor diagram.

        • Note: In delta, V{phase} = V{line}, and I{line} = \sqrt{3} \times I{phase}.

        • Hint: For inductive circuits, the line current lags the phase current by 30 degrees.

          • Ia lags I{ab} by 30 degrees.

          • Ib lags I{bc} by 30 degrees.

          • Ic lags I{ca} by 30 degrees.

        More Delta-Connected Circuit Problems

        • Problem 1: If Ia = 17.32 A \angle 20^{\circ}, determine I{ab} and V_{ab}.

        • Problem 2: If I{bc} = 5 A \angle -140^{\circ}, what is V{ab}?

        • Answers:

          • Problem 1:

            • I_{ab} = 10 A \angle 50^{\circ}

            • V_{ab} = 240 V \angle 66.7^{\circ}

          • Problem 2:

            • V_{ab} = 52.2 V \angle -3.3^{\circ}