Front:
What is the power rule for integration?
Back:
∫un du=un+1n+1+C,n≠−1\int u^n \, du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1∫undu=n+1un+1+C,n=−1
Front:
What is the integral of eue^ueu?
Back:
∫eu du=eu+C\int e^u \, du = e^u + C∫eudu=eu+C
Front:
What is the integral of aua^uau (where a>0,a≠1a > 0, a \neq 1a>0,a=1)?
Back:
∫au du=aulna+C\int a^u \, du = \frac{a^u}{\ln a} + C∫audu=lnaau+C
Front:
What is the integral of 1u\frac{1}{u}u1?
Back:
∫duu=ln∣u∣+C\int \frac{du}{u} = \ln |u| + C∫udu=ln∣u∣+C
Front:
What is the integral of sinhu\sinh usinhu?
Back:
∫sinhu du=coshu+C\int \sinh u \, du = \cosh u + C∫sinhudu=coshu+C
Front:
What is the integral of coshu\cosh ucoshu?
Back:
∫coshu du=sinhu+C\int \cosh u \, du = \sinh u + C∫coshudu=sinhu+C
Front:
What is the formula for integration by parts?
Back:
∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vdu
Front:
What is the integral of sec2x\sec^2 xsec2x?
Back:
∫sec2x dx=tanx+C\int \sec^2 x \, dx = \tan x + C∫sec2xdx=tanx+C
Front:
What is the integral of csc2x\csc^2 xcsc2x?
Back:
∫csc2x dx=−cotx+C\int \csc^2 x \, dx = -\cot x + C∫csc2xdx=−cotx+C
Front:
What is the integral of secxtanx\sec x \tan xsecxtanx?
Back:
∫secxtanx dx=secx+C\int \sec x \tan x \, dx = \sec x + C∫secxtanxdx=secx+C
Front:
What is the integral of cscxcotx\csc x \cot xcscxcotx?
Back:
∫cscxcotx dx=−cscx+C\int \csc x \cot x \, dx = -\csc x + C∫cscxcotxdx=−cscx+C
Front:
What is the method of partial fraction decomposition used for?
Back:
Used to integrate rational functions where the degree of the numerator is less than the degree of the denominator.
Example:
∫1(x−1)(x+2)dx\int \frac{1}{(x-1)(x+2)} dx∫(x−1)(x+2)1dx
Decomposes into:
Ax−1+Bx+2\frac{A}{x-1} + \frac{B}{x+2}x−1A+x+2B
Front:
What substitution should you use for a2−x2\sqrt{a^2 - x^2}a2−x2?
Back:
Use x=asinθx = a \sin \thetax=asinθ and dx=acosθdθdx = a \cos \theta d\thetadx=acosθdθ.
Front:
What substitution should you use for a2+x2\sqrt{a^2 + x^2}a2+x2?
Back:
Use x=atanθx = a \tan \thetax=atanθ and dx=asec2θdθdx = a \sec^2 \theta d\thetadx=asec2θdθ.
Front:
What substitution should you use for x2−a2\sqrt{x^2 - a^2}x2−a2?
Back:
Use x=asecθx = a \sec \thetax=asecθ and dx=asecθtanθdθdx = a \sec \theta \tan \theta d\thetadx=asecθtanθdθ.
Front:
How do you evaluate an improper integral with an infinite bound?
Back:
Convert it into a limit:
∫a∞f(x) dx=limb→∞∫abf(x) dx\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx∫a∞f(x)dx=b→∞lim∫abf(x)dx
Front:
How do you integrate sinmxcosnx\sin^m x \cos^n xsinmxcosnx when one exponent is odd?
Back:
If mmm is odd:
Save one sinx\sin xsinx and use sin2x=1−cos2x\sin^2 x = 1 - \cos^2 xsin2x=1−cos2x.
Substitute u=cosxu = \cos xu=cosx, so du=−sinxdxdu = -\sin x dxdu=−sinxdx.
If nnn is odd:
Save one cosx\cos xcosx and use cos2x=1−sin2x\cos^2 x = 1 - \sin^2 xcos2x=1−sin2x.
Substitute u=sinxu = \sin xu=sinx, so du=cosxdxdu = \cos x dxdu=cosxdx.
Front:
How do you integrate sinmxcosnx\sin^m x \cos^n xsinmxcosnx when both exponents are even?
Back:
Use power-reduction identities:
sin2x=1−cos2x2,cos2x=1+cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}, \quad \cos^2 x = \frac{1 + \cos 2x}{2}sin2x=21−cos2x,cos2x=21+cos2x
This reduces the integral into simpler terms that can be integrated directly.
Front:
What is a common strategy for solving ∫xex dx\int x e^x \, dx∫xexdx?
Back:
Use integration by parts with:
u=xu = xu=x, so du=dxdu = dxdu=dx.
dv=exdxdv = e^x dxdv=exdx, so v=exv = e^xv=ex.
∫xex dx=xex−∫ex dx=xex−ex+C\int x e^x \, dx = x e^x - \int e^x \, dx = x e^x - e^x + C∫xexdx=xex−∫exdx=xex−ex+C
Front:
What is a common strategy for solving ∫xlnx dx\int x \ln x \, dx∫xlnxdx?
Back:
Use integration by parts with:
u=lnxu = \ln xu=lnx, so du=dxxdu = \frac{dx}{x}du=xdx.
dv=xdxdv = x dxdv=xdx, so v=x22v = \frac{x^2}{2}v=2x2.
∫xlnx dx=x22lnx−∫x22⋅dxx\int x \ln x \, dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{dx}{x}∫xlnxdx=2x2lnx−∫2x2⋅xdx=x22lnx−x24+C= \frac{x^2}{2} \ln x - \frac{x^2}{4} + C=2x2lnx−4x2+C
Front:
What is a common strategy for solving ∫xsinx dx\int x \sin x \, dx∫xsinxdx?
Back:
Use integration by parts with:
u=xu = xu=x, so du=dxdu = dxdu=dx.
dv=sinxdxdv = \sin x dxdv=sinxdx, so v=−cosxv = -\cos xv=−cosx.
∫xsinx dx=−xcosx+∫cosx dx\int x \sin x \, dx = -x \cos x + \int \cos x \, dx∫xsinxdx=−xcosx+∫cosxdx=−xcosx+sinx+C= -x \cos x + \sin x + C=−xcosx+sinx+C
Front:
How do you evaluate an improper integral with an infinite discontinuity?
Back:
Convert it into a limit at the discontinuity:
∫abf(x) dx,x=c is a discontinuity\int_{a}^{b} f(x) \, dx, \quad x = c \text{ is a discontinuity}∫abf(x)dx,x=c is a discontinuity
Break into two limits:
limt→c−∫atf(x) dx+limt→c+∫tbf(x) dx\lim_{t \to c^-} \int_{a}^{t} f(x) \, dx + \lim_{t \to c^+} \int_{t}^{b} f(x) \, dxt→c−lim∫atf(x)dx+t→c+lim∫tbf(x)dx
If either limit diverges, the integral is improper and divergent.