Pre-Calculus BC Honors - Midterm Review

Pre-Calculus BC Honors - Midterm Review

This midterm review encapsulates a wide range of topics to prepare students for the upcoming examination. The midterm exam is designed similarly to prior assessments, comprising both calculator-required and no-calculator problems. Students must demonstrate their problem-solving process for most questions, although some will allow for multiple-choice answers without justifications.

General Preparation

  • Materials to Review:

    • Homework assignments

    • Class notes

    • Past tests and review sheets

Exam Format

  • Types of Questions:

    • No Calculator problems

    • Calculator problems

  • Work Requirement:

    • Most problems require showing work

    • Some may not require justification or work

No Calculator Problems

  1. Plotting Polar Functions

    • Given functions to analyze:

      • a. 𝑟 = 2 cos 𝜃

      • b. 𝑟 = 1 + 2 sin 𝜃

      • c. 𝑟 = 4 − 4 cos 𝜃

    • Steps:

      • Plot at least 4 points for each function

      • Sketch the graph of each polar curve

  2. Limits Evaluation

    • Evaluate limits algebraically:

      • a. ext{lim}_{x o 3} rac{x^2}{x-1}

      • b. ext{lim}_{x o ext{e}} (x^2 ext{ln} x)

      • c. ext{lim}_{x o 4} (x^2 - 16)/(x-4)

      • d. ext{lim}_{x o 1} (x^3 - 3x^2 + 4x - 1)

      • e. ext{lim}_{x o 0} rac{ an x}{x}

      • f. ext{lim}_{x o -2} (x^2 + 4x + 4)

  3. Piecewise Function Evaluation

    • Given function:

      • f(x) = \begin{cases} 5x^2 + 3 & x < -1 \ x & x \geq -1 \end{cases}

    • Questions:

      • a. Find f(3) and f(2).

      • b. Determine continuity at x = -1.

  4. Limit Evaluation for Piecewise Functions

    • Given function:

      • f(x) = \begin{cases} x - 1 & x \leq 3 \ 2x - 3 & x > 3 \end{cases}

    • Find ext{lim}_{x o 3} f(x).

  5. Limit Evaluation at Piecewise Threshold

    • Given function:

      • f(x) = \begin{cases} \cos x - \sin \pi & x \leq \pi \ x - \pi - 1 & x > \pi \end{cases}

    • Find ext{lim}_{x o 2} f(x).

  6. Continuity Determination

    • Given function:

      • f(x) = \begin{cases} 5x^3 + x & x \leq -2 \ -2x^2 & x > -2 \end{cases}

    • Determine all x-values where f is continuous.

  7. Function Equation with Asymptotes

    • Write an equation for a function with:

      • Removable discontinuities at x = 1 and x = 2

      • Vertical asymptote at x = 3

      • Horizontal asymptote y = 4

  8. Expansion and Evaluation

    • Expand and evaluate the following sums using a calculator:

      • Refer to specific examples given in the review.

  9. Trigonometric Identities Verification

    • Show that the following identities hold true for all x:

      • a. \sin^3 x + \cos^3 x = 1

      • b. \tan x + \cot x = \sec x \csc x

Calculator Problems

  1. Function Composition

    • Given:

      • f(x) = x^2 + 2x - 1 and g(x) = 2x - 3

    • Find:

      • a. f(g(x))

      • b. g(f(x))

      • c. g(3x)

      • d. g(f(x) + 2)

  2. Powers of i Simplification

    • Simplify:

      • a. i^3

      • b. i^{5}

      • c. i^{-1}

      • d. i^{7}

  3. Simplifying Squares of Negative Numbers

    • Simplify:

      • a. \sqrt{-25} \cdot \sqrt{-6}

      • b. \sqrt{-16} \cdot \sqrt{9}

  4. Complex Number Simplifications

    • a. (3i - 2) - (-15i - 7)

    • b. Simplify expressions involving complex numbers.

  5. Finding Intercepts of Logarithmic Function

    • Given the function:

      • y = \log(x - 3) + 2

    • Find:

      • a. x-intercepts.

      • b. y-intercepts and sketch.

      • c. Domain of the function.

  6. Determining Domain and Range

    • Determine for the following functions:

      • a. a(x) = 3x^2 + 1

      • b. b(x) = -2x^3 - 3x + 1

      • c. c(x) = 2 \ln(x - 2) - 5

      • d. d(x) = 2e^{x} + 3

      • e. e(x) = \sqrt{4 - x}

      • f. f(x) = 3 \sin(2x) + 1

  7. Expansion using Pascal’s Triangle

    • a. Expand: (x - 3y)^5

    • b. Expand: (2m + 1)^4

  8. Finding Zeros via Synthetic Division

    • Given polynomials:

      • a. f(x) = x^3 - 6x^2 + 4x - 24; f(6) = 0

      • b. g(x) = 2x^4 - 7x^3 + 4x^2 + 7x - 6; g(2) = 0

  9. Graphing Polynomials

    • Steps to graph the polynomials considering intercepts, behavior at x-intercepts, end behavior using limits:

      • a. For f(x) = x^3 + 4x^2 - 5x

      • b. For g(x) = -x^4 + 4x^2

  10. Permutations vs. Combinations

    • Given scenarios decide:

      • a. Selecting 4-person team from 9 athletes - Combination

      • b. Arrangement of letters in “facetious” - Permutation

      • c. Batting lineup of 9 players from 17 - Combination

      • d. Math class sending 2 people to competition - Combination

  11. Hiring Mechanics Calculation

    • Given 5 mechanics hired from 8 applicants:

      • Calculate combinations: inom{8}{5}

  12. Song Order Calculation

    • Choir practicing 12 songs, ordering 5: Calculate permutations: P(12, 5)

  13. Polynomial Function Factorization with Synthetic Division

    • Given function:

      • f(x) = 2x^3 - 4x^2 - 5x - 1

    • Perform:

      • a. Synthetic division using factor (x - 3)

      • b. Remainder theorem to evaluate f(3)

      • c. Express rac{f(x)}{(x ext{- factor})} in mixed-number form.

      • d. Find slant asymptote.

  14. Function Evaluations Combining Functions

    • Given:

      • f(x) = x^2 + 2 and g(x) = 4x - 1

    • Evaluate:

      • a. (f ext{∘} g)(2)

      • b. (g ext{∘} g)(5)

      • c. (g ext{∘} f)(x)

  15. Rational Functions Analysis

    • Given rational function:

      • r(x) = \frac{x^2 - 4}{x^2 - 2x}

    • Investigate:

      • a. Find discontinuities.

      • b. Vertical asymptote and hole.

      • c. Determine horizontal asymptote.

      • d. Intercepts and graph sketch.

  16. Polynomial Description from Graph Behavior

    • Write equations based on:

      • a. x-axis crossing at -2, 1, and 3, with y going to -∞ as x → ∞.

      • b. Bouncing off x-axis at (-1, 0) and (2, 0), with y-intercept at (0, 12).

Multiple Choice Questions

  1. Limit Evaluation

    • Evaluate: ext{lim}_{x o 0} rac{x^3}{x^2 + 2}.

    • Choices:

      • (A) 0 (B) 1 (C) 4 (D) nonexistent

  2. Limit Evaluation of Quotients

    • Evaluate: ext{lim}_{x o 0} rac{x^2}{x^3}{ ext{ln} x}.

      • Choices: (A) 4 (B) 1 (C) 0 (D)

  3. Limit Behavior

    • Evaluate: ext{lim}_{x o ext{∞}} rac{1+x}{1+x^2}. Choices: (B) 0 (C) 1 (D)

  4. Asymptotic Behavior Implications

    • Given horizontal asymptote y = 2, evaluate conditions.

  5. Limit Existence Analysis

    • Analyze graph behavior within domain 0 ≤ x ≤ 4.

  6. Intermediate Value Theorem Application

    • Analysis of equations guaranteed solutions on [1, 4].

  7. Zeros Assessment in Continuous Functions

    • Determine zeros based on given function values.