Exponents: Shorthand for repeated multiplication. In b^n, b is the base, and n is the exponent.
Properties of Exponents:
Whole Number Exponents: b^n = b \cdot b \cdot … \cdot b (n times)
Example: 2^3 = 2 \cdot 2 \cdot 2 = 8
Zero Exponent: b^0 = 1, where b \neq 0
Example: 5^0 = 1
Negative Exponents: b^{-n} = \frac{1}{b^n}, where b \neq 0
Example: 2^{-2} = \frac{1}{2^2} = \frac{1}{4}
Rational Exponents (nth root): \sqrt[n]{b} = b^{\frac{1}{n}}, where if n is even, then b \geq 0
Example: \sqrt[3]{8} = 8^{\frac{1}{3}} = 2
Rational Exponents: \sqrt[n]{b^m} = (\sqrt[n]{b})^m = (b^{\frac{1}{n}})^m = b^{\frac{m}{n}}, where if n is even, then b \geq 0
Example: \sqrt[3]{8^2} = (\sqrt[3]{8})^2 = 2^2 = 4
Operations with Exponents:
Multiplying Like Bases: b^n \cdot b^m = b^{n+m}. Add exponents.
Example: 2^2 \cdot 2^3 = 2^{2+3} = 2^5 = 32
Dividing Like Bases: \frac{b^n}{b^m} = b^{n-m}. Subtract exponents.
Example: \frac{3^5}{3^2} = 3^{5-2} = 3^3 = 27
Exponent of Exponent: (b^n)^m = b^{n \cdot m}. Multiply exponents.
Example: (2^3)^2 = 2^{3 \cdot 2} = 2^6 = 64
Removing Parentheses: (ab)^n = a^n \cdot b^n
Example: (2x)^3 = 2^3 \cdot x^3 = 8x^3
Removing Parentheses in Fractions: (\frac{a}{b})^n = \frac{a^n}{b^n}
Example: (\frac{x}{3})^2 = \frac{x^2}{3^2} = \frac{x^2}{9}
Special Conventions:
-b^n = -(b^n)
-b^n \neq (-b)^n
k b^n = k(b^n)
k b^n \neq (kb)^n
(b)^n m = b^{(n m)}
b^{n^m} \neq (b^n)^m
Logarithms: Inverse of exponentiation.
If 2^3 = 8, then \log_2 8 = 3
Definition: \log_b A = n if and only if b^n = A.
Base b must be positive, so A is always positive.
Common bases: 10 and e \approx 2.718
Base 10: \log A = n \Leftrightarrow 10^n = A
Example: \log 100 = 2 \Leftrightarrow 10^2 = 100
Natural logarithm: \ln A = n \Leftrightarrow e^n = A
Example: \ln e = 1 \Leftrightarrow e^1 = e
Good to Know:
\log_b 1 = 0
\log_b b = 1
Inverse Properties of Logs:
\log_b b^x = x
b^{\log_b x} = x
Laws of Logarithms:
Product Rule: \logb x + \logb y = \log_b (x \cdot y)
Example: \log2 4 + \log2 8 = \log2 (4 \cdot 8) = \log2 32 = 5
Quotient Rule: \logb x - \logb y = \log_b (\frac{x}{y})
Example: \log3 27 - \log3 3 = \log3 (\frac{27}{3}) = \log3 9 = 2
Power Rule: n \cdot \logb x = \logb x^n
Example: 2 \cdot \log5 5 = \log5 5^2 = \log_5 25 = 2
Factoring: Expressing a polynomial as a product.
a \cdot b = 0 has solutions a = 0 or b = 0.
Special Products and Factoring Techniques
Distributive Law: ax + ay = a(x + y)
Example: 3x + 6y = 3(x + 2y)
Simple Trinomial: x^2 + (a+b)x + a \cdot b = (x + a)(x + b)
Example: x^2 + 5x + 6 = (x + 2)(x + 3)
Difference of Squares: x^2 – a^2 = (x – a)(x + a)
Example: x^2 – 16 = (x – 4)(x + 4)
Difference of Fourth Powers: x^4 – a^4 = (x^2 – a^2)(x^2 + a^2) = (x – a)(x + a)(x^2 + a^2)
Example: x^4 – 81 = (x^2 – 9)(x^2 + 9) = (x – 3)(x + 3)(x^2 + 9)
Sum or Difference of Cubes:
Sum: x^3 + a^3 = (x + a)(x^2 – ax + a^2)
Example: x^3 + 8 = (x + 2)(x^2 – 2x + 4)
Difference: x^3 – a^3 = (x – a)(x^2 + ax + a^2)
Example: x^3 – 27 = (x – 3)(x^2 + 3x + 9)
Factoring by Grouping: acx^3 + adx^2 + bcx + bd = ax^2(cx + d) + b(cx + d) = (ax^2 + b)(cx + d)
Example: 2x^3 – 3x^2 + 4x – 6 = x^2(2x – 3) + 2(2x – 3) = (x^2 + 2)(2x – 3)
Quadratic Formula: For ax^2 + bx + c = 0, x = \frac{–b \pm \sqrt{b^2 – 4ac}}{2a}
Example: x^2 + 2x – 1 = 0 \Rightarrow x = \frac{–2 \pm \sqrt{2^2 – 4(1)(–1)}}{2(1)} = \frac{–2 \pm \sqrt{8}}{2} = -1 \pm \sqrt{2}
Rational expressions: Algebraic fractions with polynomials in numerator and denominator.
Operations with Fractions
Add Fractions: \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}
Example: \frac{1}{2} + \frac{2}{3} = \frac{1 \cdot 3 + 2 \cdot 2}{2 \cdot 3} = \frac{3 + 4}{6} = \frac{7}{6}
Subtract Fractions: \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}
Example: \frac{3}{4} - \frac{1}{3} = \frac{3 \cdot 3 - 1 \cdot 4}{4 \cdot 3} = \frac{9 - 4}{12} = \frac{5}{12}
Multiply Fractions: (\frac{a}{b})(\frac{c}{d}) = \frac{ac}{bd}
Example: (\frac{2}{3})(\frac{3}{5}) = \frac{2 \cdot 3}{3 \cdot 5} = \frac{6}{15} = \frac{2}{5}
Divide Fractions: Invert and multiply or multiply by the common denominator.
Invert and Multiply: \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}
Example: \frac{1}{2} \div \frac{3}{4} = \frac{1}{2} \cdot \frac{4}{3} = \frac{4}{6} = \frac{2}{3}
Multiply by Common Denominator: \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{\frac{a}{b}}{\frac{c}{d}} \cdot \frac{bd}{bd} = \frac{ad}{bc}
Example: \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{\frac{1}{2}}{\frac{3}{4}} \cdot \frac{8}{8} = \frac{4}{6} = \frac{2}{3}
Cancel: \frac{ab}{ad} = \frac{b}{d}
Example: \frac{2x}{2y} = \frac{x}{y}
Rationalizing
a. If numerator or denominator is \sqrt{a}, multiply by \frac{\sqrt{a}}{\sqrt{a}}.
b. If numerator or denominator is \sqrt{a} - b, multiply by \frac{\sqrt{a}+b}{\sqrt{a}+b}.
c. If numerator or denominator is \sqrt{a} + b, multiply by \frac{\sqrt{a}-b}{\sqrt{a}-b}.
Solving equations: Finding all solutions or roots.
Solutions are unchanged by adding, subtracting, multiplying, or dividing both sides by the same quantity (except dividing by zero).
Solution method depends on the degree of the equation.
First-degree equations: Solve using addition, subtraction, multiplication, and division.
Example: 2x + 5 = 9 \Rightarrow 2x = 4 \Rightarrow x = 2
Second-degree equations (quadratic equations): Solve by factoring or the quadratic formula.
Example: x^2 – 5x + 6 = 0 \Rightarrow (x – 2)(x – 3) = 0 \Rightarrow x = 2 \text{ or } x = 3
Quadratic formula: For ax^2 + bx + c = 0, x = \frac{–b \pm \sqrt{b^2 – 4ac}}{2a}
Example: x^2 – 5x + 6 = 0 \Rightarrow x = \frac{5 \pm \sqrt{(–5)^2 – 4(1)(6)}}{2(1)} = \frac{5 \pm \sqrt{1}}{2} = \frac{5 \pm 1}{2} \Rightarrow x = 3 \text{ or } x = 2
Equations involving absolute value: Equivalent to two equations without the absolute value sign.
Example: |x + 2| = 5 \Rightarrow x + 2 = 5 \text{ or } –(x + 2) = 5 \Rightarrow x = 3 \text{ or } x = –7
Inequalities: Mathematical expressions of comparison.
x > 3 (x is greater than 3)
-2 \leq a < 4 (a is between -2 (inclusive) and 4 (exclusive))
Symbols:
>: greater than
<: less than
\geq: greater than or equal to
\leq: less than or equal to
Algebraic inequalities: Generally have an infinite number of real solutions.
Algebraic equations: Have a finite number of real solutions.
Solving Linear Inequalities
Similar to linear equations, but multiplying or dividing by a negative number reverses the inequality sign.
Example: -2x + 3 < 7 \Rightarrow -2x < 4 \Rightarrow x > -2
Solving Absolute Value Inequalities
Consider two cases: positive and negative values inside the absolute value.
If the value is negative, multiply by -1 to make it positive.
Example: |x - 3| \geq 4
Case I: (x - 3) is positive:
x - 3 \geq 4 \Rightarrow x \geq 7
Case II: (x - 3) is negative, make it positive:
-(x - 3) \geq 4 \Rightarrow x - 3 \leq -4 \Rightarrow x \leq -1
Solving Higher Order Inequalities
Use a number line to account for all possible combinations of positive and negative terms.
Example: x^2 – 2x – 8 \geq 0 \Rightarrow (x – 4)(x + 2) \geq 0
Roots: x = -2, 4
Place roots on a number line, using closed circles for \geq or \leq.
Test each region to determine the sign of each term; the inequality sign determines the solution region.
---Begin Practice Problems---
Simplify the following as much as possible:
3^2 \cdot 3^4 \cdot 3^{-5} = 3^{2+4-5} = 3^1 = 3
(\frac{-2x^2}{y^3})^3 = \frac{(-2)^3 (x^2)^3}{(y^3)^3} = \frac{-8x^6}{y^9} = -\frac{8x^6}{y^9}
(\frac{7}{7^2})^{-1} = (7^{-1})^{-1} = 7
\frac{25 \cdot 5^2}{3} = \frac{25 \cdot 25}{3} = \frac{625}{3}
x(x^2)^n = x \cdot x^{2n} = x^{2n+1}
\frac{3x^2y^5}{9x^7y} = \frac{3}{9} \cdot \frac{x^2}{x^7} \cdot \frac{y^5}{y} = \frac{1}{3}x^{-5}y^4 = \frac{y^4}{3x^5}
(\frac{2x}{3y^4})^{\frac{2}{xy^7}} = \frac{4x^2}{9y^8}
125^{\frac{1}{3}} = \sqrt[3]{125} = 5
(\sqrt{\frac{81}{100}})^{-\frac{3}{2}} = (\frac{9}{10})^{-\frac{3}{2}} = (\frac{10}{9})^{\frac{3}{2}} = \frac{10 \sqrt{10}}{9 \sqrt{9}} = \frac{10 \sqrt{10}}{27}
\sqrt[3]{\frac{-27r^6}{125s^9}} = \frac{\sqrt[3]{-27r^6}}{\sqrt[3]{125s^9}} = \frac{-3r^2}{5s^3} = -\frac{3r^2}{5s^3}
(\sqrt[3]{-8})^2 = (-2)^2 = 4
\sqrt[3]{(-8)^2} = \sqrt[3]{64} = 4
(x+y)^3 \cdot (x+y)^4 = (x+y)^{3+4} = (x+y)^7
Translate into log notation:
2^7 = 128 \Rightarrow \log_2 128 = 7
9^{\frac{3}{2}} = 27 \Rightarrow \log_9 27 = \frac{3}{2}
2^{-3} = \frac{1}{8} \Rightarrow \log_2 \frac{1}{8} = -3
Translate into exponential notation:
\log_3 9 = 2 \Rightarrow 3^2 = 9
\log_5 \frac{1}{5} = -1 \Rightarrow 5^{-1} = \frac{1}{5}
\log_{35} 1 = 0 \Rightarrow 35^0 = 1
Find N:
\log_{10} N = 2 \Rightarrow N = 10^2 = 100
\log_5 N = -2 \Rightarrow N = 5^{-2} = \frac{1}{25}
\log_{100} N = -\frac{7}{2} \Rightarrow N = 100^{-\frac{7}{2}} = (10^2)^{-\frac{7}{2}} = 10^{-7} = \frac{1}{10^7}
Solve for x:
\log_8 64 = x \Rightarrow 8^x = 64 = 8^2 \Rightarrow x = 2
\log_2 (\frac{1}{32}) = x \Rightarrow 2^x = \frac{1}{32} = 2^{-5} \Rightarrow x = -5
\log_9 \frac{1}{27} = x \Rightarrow 9^x = \frac{1}{27} \Rightarrow (3^2)^x = 3^{-3} \Rightarrow 3^{2x} = 3^{-3} \Rightarrow x = -\frac{3}{2}
Find a:
\log_a 64 = 3 \Rightarrow a^3 = 64 \Rightarrow a = \sqrt[3]{64} = 4
\log_a \frac{1}{7} = -2 \Rightarrow a^{-2} = \frac{1}{7} \Rightarrow \frac{1}{a^2} = \frac{1}{7} \Rightarrow a^2 = 7 \Rightarrow a = \sqrt{7}
\log_a 125 = \frac{3}{2} \Rightarrow a^{\frac{3}{2}} = 125 \Rightarrow a = 25
Given the log values below, find the numerical value of the following logarithms, using log properties:
\log 2 = 0.301, \quad \log 3 = 0.477, \quad \log 5 = 0.699, \quad \log 7 = 0.845
\ln 2 = 0.693, \quad \ln 3 = 1.099, \quad \ln 5 = 1.609, \quad \ln 7 = 1.946
\log 14 = \log (2 \cdot 7) = \log 2 + \log 7 = 0.301 + 0.845 = 1.146
\ln 8 = \ln (2^3) = 3 \ln 2 = 3(0.693) = 2.079
\log (\frac{5}{7}) = \log 5 - \log 7 = 0.699 - 0.845 = -0.146
\ln (\frac{5}{e}) = \ln 5 - \ln e = 1.609 - 1 = 0.609
\ln e^{100} = 100
\log_5 5^{102} = 102
Write as the sum or difference of simpler log quantities:
\ln (\frac{a^2 b^4}{z^3}) = 2 \ln a + 4 \ln b - 3 \ln z
Express as a single log with leading coefficient 1:
\frac{1}{2}(3 \ln x + \ln y - \ln z) = \frac{1}{2} (\ln x^3 + \ln y - \ln z) = \frac{1}{2} (\ln (x^3y) - \ln z) = \frac{1}{2} \ln (\frac{x^3y}{z}) = \ln \sqrt{\frac{x^3y}{z}}
Solve the following log equations:
\log 10 + \log 3 = \log x \Rightarrow \log (10 \cdot 3) = \log x \Rightarrow \log 30 = \log x \Rightarrow x = 30
\log (x+1) - \log (x-1) = \log 8 \Rightarrow \log (\frac{x+1}{x-1}) = \log 8 \Rightarrow \frac{x+1}{x-1} = 8 \Rightarrow x+1 = 8(x-1) \Rightarrow x+1 = 8x - 8 \Rightarrow 7x = 9 \Rightarrow x = \frac{9}{7}
\log2 x + \log2 (x+2) = 2 \Rightarrow \log_2 (x(x+2)) = 2 \Rightarrow x(x+2) = 2^2 \Rightarrow x^2 + 2x = 4 \Rightarrow x^2 + 2x - 4 = 0 \Rightarrow x = -1 + \sqrt{5}
Factor completely:
2ax + 4a^2x^2 = 2ax(1 + 2ax)
x^3 + x^2 + x + 1 = x^2(x+1) + 1(x+1) = (x^2 + 1)(x+1)
400 - 25y^2 = 25(16 - y^2) = 25(4-y)(4+y)
(a+b)^2 - c^2 = [(a+b)+c][(a+b)-c] = (a+b+c)(a+b-c)
x^6 - 7x^3 - 8 = (x^3)^2 - 7x^3 - 8 = (x^3 - 8)(x^3 + 1) = (x-2)(x^2+2x+4)(x+1)(x^2-x+1)
x^2 + 100 does not factor
16m^2 - 56mn + 49n^2 = (4m - 7n)^2
64 – 27x^3 = 4^3 - (3x)^3 = (4 - 3x)(16 + 12x + 9x^2)
x^2 + 3x + wx + 3w = x(x+3) + w(x+3) = (x+w)(x+3)
1 - x^2 - 2xy - y^2 = 1 - (x^2 + 2xy + y^2) = 1 - (x+y)^2 = [1-(x+y)][1+(x+y)] = (1-x-y)(1+x+y)
5x^5 + 30x^3 + 45x = 5x(x^4 + 6x^2 + 9) = 5x(x^2+3)^2
Simplify as completely as possible:
\frac{3x^2 – 75y^2}{3x^2 – 21xy + 30y^2} = \frac{3(x^2 - 25y^2)}{3(x^2 - 7xy + 10y^2)} = \frac{(x-5y)(x+5y)}{(x-5y)(x-2y)} = \frac{x+5y}{x-2y}
\frac{a^2 – b^2}{b – a} = \frac{(a-b)(a+b)}{-(a-b)} = -(a+b) = -a - b
\frac{4–2x}{6x+30} \cdot \frac{x^2–25}{x^2 –7x+10} = \frac{-2(x-2)}{6(x+5)} \cdot \frac{(x-5)(x+5)}{(x-5)(x-2)} = \frac{-2}{6} = -\frac{1}{3}
\frac{5x^2 –9x–2}{30x^3+6x^2} \div \frac{x^4–3x^2–4}{2x^8 +6x^7+4x^6} = \frac{5x^2 –9x–2}{30x^3+6x^2} \cdot \frac{2x^8 +6x^7+4x^6}{x^4–3x^2–4} = \frac{(5x+1)(x-2)}{6x^2(5x+1)} \cdot \frac{2x^6(x^2+3x+2)}{(x^2-4)(x^2+1)} = \frac{(x-2)}{6x^2} \cdot \frac{2x^6(x+1)(x+2)}{(x-2)(x+2)(x^2+1)} = \frac{x^4(x+1)}{3(x^2+1)}
(\frac{1– x}{y}) \div (\frac{y – x^2}{y}) = (\frac{1– x}{y}) \cdot (\frac{y}{y – x^2}) = \frac{1– x}{y-x^2} = \frac{1-x}{(y-x)(1+x)} = \frac{-(x-1)}{(y-x)(1+x)} = \frac{-(x-1)}{1+y}
\frac{5}{x+2} + \frac{5}{2–x} – \frac{6}{x^2–4} = \frac{5}{x+2} - \frac{5}{x-2} - \frac{6}{(x-2)(x+2)}= \frac{5(x-2) - 5(x+2) - 6}{(x-2)(x+2)} = \frac{5x - 10 -5x - 10 - 6}{(x-2)(x+2)} = \frac{-26}{(x-2)(x+2)} = \frac{-26}{(4-x^2)} = \frac{26}{(4-x^2)}
\frac{3x–4}{x^2 —9} – \frac{2x–3}{x^2 –x–6} = \frac{3x-4}{(x-3)(x+3)} - \frac{2x-3}{(x-3)(x+2)} = \frac{(3x-4)(x+2)-(2x-3)(x+3)}{(x-3)(x+3)(x+2)} = \frac{3x^2+6x-4x-8-(2x^2+6x-3x-9)}{(x-3)(x+3)(x+2)} = \frac{x^2–x+1}{(x+3)(x–3)(x+2)}
Solve for x:
3(x - 4) + 5(x+6) = 14 \Rightarrow 3x - 12 + 5x + 30 = 14 \Rightarrow 8x + 18 = 14 \Rightarrow 8x = -4 \Rightarrow x = -\frac{1}{2}
\frac{x–4}{2} – \frac{x}{5} = \frac{1}{10} \Rightarrow \frac{5(x-4) - 2x}{10} = \frac{1}{10} \Rightarrow 5x -20 - 2x = 1 \Rightarrow 3x = 21 \Rightarrow x = 7
\frac{4}{x+1} = \frac{3}{x} + \frac{1}{15} \Rightarrow \frac{4}{x+1} = \frac{45+x}{15x} \Rightarrow 60x=(45+x)(x+1) \Rightarrow x=5,9
\frac{6–x}{x^2–4} – 2 = \frac{x}{x+2} \Rightarrow \frac{6-x}{(x-2)(x+2)}-\frac{x}{x+2}=2
x^2 – 8x = –10 \Rightarrow x^2 - 8x + 10 = 0 \Rightarrow x = \frac{8 \pm \sqrt{64 - 40}}{2} = \frac{8 \pm \sqrt{24}}{2} = \frac{8 \pm 2\sqrt{6}}{2} = 4 \pm \sqrt{6}
3x^2 – x– 2 = 0 \Rightarrow (3x + 2)(x - 1) = 0 \Rightarrow x = 1 \text{ or } x = -\frac{2}{3}
Solve the following inequalities. Give your answer in both inequality and interval notation.
3x + 2 \geq 0 \Rightarrow 3x \geq -2 \Rightarrow x \geq -\frac{2}{3}; [-\frac{2}{3}, \infty)
7 – 4x < 5 \Rightarrow – 4x < -2 \Rightarrow x > \frac{1}{2}; (\frac{1}{2}, \infty)
|2x + 1| < 2 \Rightarrow -2<2x+1<2\Rightarrow -3<2x<1 \Rightarrow -3/2 < x < 1/2; (-3/2, 1/2)
|4 – 3x| \geq 5 \Rightarrow (4-3x)\leq -5 or (4-3x)\geq 5 \Rightarrow -3x\leq -9 or -3x\geq 1 \Rightarrow x \geq 3 or x\leq -1/3; (-inf, -\frac{1}{3}] \cup [3, inf)
$$x^2 + 2x – 3 < 0 \Rightarrow (x+3)(x-1)<0 \Rightarrow -3