The Henderson-Hasselbalch equation is used:
pH = pK_a + log \frac{[A^-]}{[AcOH]}
To achieve a pH of 3.20:
3.20 = -log(1.8 × 10^{-5}) + log(x)
3.20 = 4.74 + log(x)
log(x) = -1.54
x = 0.0288
Where x represents the ratio of [AcO^-] to [AcOH].
\frac{[AcO^-]}{[AcOH]} = 0.0288
[AcO^-] = 0.0288 × [AcOH]
If [AcOH] = 0.100 M, then [AcO^-] = 0.0028 M.
The equilibrium is:
AcOH = AcO^- + H^+
Initial concentrations: 0.100 M AcOH and 0.0028 M AcO^-.
Adding 0.0010 M HCl shifts the equilibrium:
AcOH | AcO⁻ | H⁺ | |
---|---|---|---|
Initial (I) | 0.100 M | 0.0028M | 0.0010 M |
Change (C) | +0.0010 | -0.0010 | +0.0010 |
Final (E) | 0.101 M | 0.0018M | 0 |
The new pH is:
pH = 4.74 + log(\frac{0.0018}{0.101}) = 2.99
The pH changes by one's place.
Using the Henderson-Hasselbalch equation:
pH = pKa + log \frac{[NO2^-]}{[HNO_2]}
Targeting a pH of 3.20:
3.20 = -log(4.0 × 10^{-4}) + log(x)
3.20 = 3.40 + log(x)
log(x) = -0.20
x = 0.631
Where x is the ratio of [NO2^-] to [HNO2].
\frac{[NO2^-]}{[HNO2]} = 0.631
[NO2^-] = 0.631 × [HNO2]
If [HNO2] = 0.100 M, then [NO2^-] = 0.0631 M.
The equilibrium is:
HNO2 = NO2^- + H^+
Initial concentrations: 0.100 M HNO2 and 0.0631 M NO2^-.
Adding 0.0010 M HCl shifts the equilibrium:
HNO₂ | NO₂⁻ | H⁺ | |
---|---|---|---|
Initial (I) | 0.100 M | 0.0631M | 0.0010M |
Change (C) | +0.0010 | -0.0010 | +0.0010 |
Final (E) | 0.101 M | 0.0621M | 0 |
The new pH is:
pH = 3.40 + log(\frac{0.0621}{0.101}) = 3.19
Resistant to pH change.
Basic analyte is titrated with an acidic titrant.
Acidic analyte is titrated with a basic titrant.
The endpoint of a titration is when the titration has ended. Ideally, the endpoint should be as close as possible to the equivalence point.
Endpoint ≈ Eq. Pt.
Problem: Calculate the pH of the solution if 30.00 mL of a 50.0 mM AcOH (pKa = 4.75) is added to 10.0 mL of a 20.0 mM sodium hydroxide solution.
Moles of NaOH:
0.0100 L × \frac{0.0200 mol}{L} = 0.000200 mols
Moles of CH_3COOH:
0.0300 L × \frac{0.0500 mol}{L} = 0.00150 mols
Reaction:
CH₃COOH | NaOH | NaCH₃COO | H₂O | |
---|---|---|---|---|
Initial | 0.00150 | 0.000200 | 0 | - |
Change | -0.000200 | -0.000200 | +0.000200 | - |
End | 0.00130 | 0 | 0.000200 | - |
Final concentrations:
[CH3COOH] = \frac{0.00130 mols}{0.0400 L} = 0.0325 M [NaCH3COO] = \frac{0.000200 mols}{0.0400 L} = 0.00500 M
pH Calculation:
pH = 4.75 + log(\frac{0.00500}{0.0325}) = 3.94