Recording-2025-07-09T13:57:38.069Z
Review of Basic Exponent Laws (Chapter P refresher)
- Multiplication of like bases: a^x\,\cdot\,a^y=a^{x+y}
• “Same base add exponents.” - Negative exponents: a^{-x}=\dfrac{1}{a^x}
- Zero exponent: a^0=1 (NOT 0)
- First power: a^1=a
- Power of a product: (ab)^x=a^x\,b^x
- Power of a quotient: \Bigl(\dfrac{a}{b}\Bigr)^x=\dfrac{a^x}{b^x}
- Square-root fact repeatedly used: \sqrt{a}\,\cdot\,\sqrt{a}=a
Worked Simplification Examples
Example 1: (6^{\sqrt{3}})^{\sqrt{3}}
- Apply power-of-a-power rule: multiply exponents.
\sqrt{3}\times\sqrt{3}=3 ⇒ expression becomes 6^3=216.
Example 2: 6^{\sqrt{27}}\,\cdot\,6^{\sqrt{12}}
- Combine exponents (same base):
6^{\sqrt{27}+\sqrt{12}} - Rewrite each radical to expose perfect squares.
• \sqrt{27}=\sqrt{9\cdot3}=3\sqrt{3}
• \sqrt{12}=\sqrt{4\cdot3}=2\sqrt{3} - Add “like terms”: 3\sqrt{3}+2\sqrt{3}=5\sqrt{3}
- Final compact form: 6^{5\sqrt{3}}
(Textbook pursues: 6^5=7,776\;\Rightarrow\;7,776^{\sqrt{3}}; instructor notes this level of arithmetic will NOT be required on exams.)
Graphing the Basic Exponential Function
Prototype: f(x)=2^x
- Point table (chosen to reveal symmetry around the y-axis):
• x=-2: f=2^{-2}=\tfrac14
• x=-1: f=\tfrac12
• x=0: f=1 (universal y-intercept for a^x)
• x=1: f=2
• x=2: f=4 - Qualitative behaviour
• Increasing everywhere (base a=2>1).
• Domain (-\infty,\infty).
• Range (0,\infty) – never touches x-axis (horizontal asymptote y=0).
• No x-intercept.
Base between 0 and 1: f(x)=\bigl(\tfrac12\bigr)^x
- Same $x$-values give: $$1,\tfrac