5.1 Separation of Variables (Day 1)

Introduction to Integrating Differential Equations

  • New unit on applications of integrals starts with integrating differential equations with two variables.

  • Method: Separation of Variables.

Steps for Separation of Variables

Step 1: Rearranging the Equation

  • Move all y's to the left side and all x's to the right side.

  • Structure: y's and dy's on the left; x's and dx's on the right.

Step 2: Integrate Both Sides

  • Integrate left side with respect to y and right side with respect to x.

Step 3: Solve for y

  • Isolate y by performing necessary algebraic manipulations.

Example Problem 1: Integrating y and x

  • Start with ( y \frac{dy}{dx} = 2x ).

  • Multiplying both sides by dx: ( y \frac{dy}{dx} dx = 2x dx ).

  • Resulting in ( y dy = 2x dx ).

  • Integrate both sides:

    • ( \int y dy = \int 2x dx )

      • Left side: ( \frac{y^2}{2} + C_1 )

      • Right side: ( x^2 + C_2 )

  • Combine constants to get ( \frac{y^2}{2} = x^2 + C ).

  • Final form: ( y = \sqrt{2x^2 + C} ).

Example Problem 2: Revising the Equation

  • Rearranging: ( dy = y^2 dx )

  • Dividing by y^2: ( \frac{1}{y^2} dy = dx ).

  • Integrating gives: ( -\frac{1}{y} = x + C ).

  • Isolating y leads to: ( y = -\frac{1}{x + C} ).

Example Problem 3: Incorporating Trigonometric Functions

  • Equation: ( 3y^2 \frac{dy}{dx} = x + \sin(x) ).

  • Rearranging: ( 3y^2 dy = (x + \sin(x)) dx ).

  • When integrated:

    • Left: ( y^3 + C_1 )

    • Right: ( \frac{1}{2}x^2 - \cos(x) + C_2 )

  • Isolating y results in: ( y = \sqrt[3]{\frac{1}{2}x^2 - \cos(x) + C} ).

Unique Case: Using ln Function

  • Given: ( dy = xy dx ) leads to ( \frac{1}{y} dy = x dx ).

  • Integration yields: ( \ln(y) = \frac{1}{2}x^2 + C ).

  • To isolate y, exponentiate both sides:

    • ( y = e^{\frac{1}{2}x^2 + C} ).

    • Result: ( y = C e^{\frac{1}{2}x^2} ) where C is a constant.

robot