Chemistry Essentials – Long Summary
Introduction
- Chemistry = study of matter (anything with mass & occupies space) and energy, plus the changes they undergo
- Hardly any human activity is chemistry‐free; cleaners, medicines, fuels, metallurgy, food & drink all depend on it
- Book’s scope ➜ “bare essentials” of a first-semester HS/college general-chem course; detailed, example-rich, light on fluff
- Reminder: italicised words introduce new terms; bold text highlights key steps in lists
- Foolish assumptions (why you might use these notes): exam review, professional test prep, parental homework help, “non-traditional” student refresher
Matter & Energy (Ch. 1)
- States of matter
- Solids: definite shape/volume, particles in rigid crystal lattice, vibrate only slightly
- Liquids: definite volume, no fixed shape, particles farther apart & mobile; may form small clusters
- Gases: no fixed shape/volume; particles far apart, independent, fill container
- Phase changes
- Condensation (gas→liquid); Freezing (liquid→solid),
\text{H}2\text O(g)→\text{H}2\text O(l)→\text{H}_2\text O(s) - Melting & boiling: at mp & bp T remains constant until change complete; melting point = freezing point
- Sublimation/deposition: solid⇌gas (dry ice, mothballs)
- Condensation (gas→liquid); Freezing (liquid→solid),
- Pure substances vs. mixtures
- Pure: elements & compounds (constant composition)
- Mixtures: homogeneous (solutions) vs. heterogeneous; can separate by physical means
- Measurements & SI
- Length-m, mass-g (kg), volume-L; prefixes: k=10^3, c=10^-2, m=10^-3
- Physical vs. chemical properties
- Extensive (mass, V) vs. intensive (color, density d=\frac m v)
- Energy
- Kinetic (motion) vs. potential (stored in position/bonds); law of conservation of energy
- Temperature = avg kinetic energy; units °C, K (K=°C+273); heat unit joule (J), 1\;\text{cal}=4.184\;\text J
Atomic Structure (Ch. 2)
- Sub-atomic particles
- Proton p^+ (mass≈1 amu, +1), neutron n^0 (≈1 amu, 0), electron e^- (0.0005 amu, −1)
- Nucleus: dense 10⁻¹⁵ m core; A=Z+N (mass #); element notation ^A_ZX
- Isotopes & ions
- Isotopes: same Z, different N (e.g. ^11H, ^21H, ^3_1H); average atomic mass on PT is weighted by abundance
- Ions: loss ⇒ cation, gain ⇒ anion (Na→Na⁺, Cl→Cl⁻)
- Quantum model
- 4 quantum #’s: n,l,ml,ms; subshell letters s,p,d,f
- Aufbau filling order (1s < 2s < 2p < 3s < 3p < 4s < 3d …); Hund’s rule; Pauli exclusion (↑↓)
- Electron configuration (O: 1s^22s^22p^4); valence = outer s,p e⁻ ⇒ governs chemistry
Periodic Table (Ch. 3)
- Arranged by increasing Z; rows=periods (7); columns=groups/families (IA etc or 1–18)
- Classifications
- Metals (left of staircase): shiny, conductive, malleable, form cations
- Non-metals (right): brittle, insulators, form anions
- Metalloids (B, Si, Ge, As, Sb, Te, At): semi-conductors
- Representative trends: valence = group number (A-families) ⇒ predictable ionic charges
Nuclear Chemistry (Ch. 4)
- Natural decay modes
- α (^42He), β (^0{-1}e), γ (energy), positron ^0_{+1}e, electron capture
- Balancing nuclear eqn: conserve A & Z (e.g. ^{35}{17}Cl+^10n→^{1}{1}H+^{35}{16}S)
- Half-life t{1/2}: N=N0e^{-kt}; C-14 dating; U-238 decay series
- Fission: U-235 or Pu-239 + n → lighter nuclei + energy; mass defect E=mc^2; chain reaction, critical mass
- Fusion: light nuclei (H-2+H-3) → He-4 + n + energy; powers Sun
Ionic Bonding (Ch. 5)
- Atoms gain/lose e⁻ to satisfy octet (noble gas config)
- Charges from PT: IA +1, IIA +2, IIIA +3, VA −3, VIA −2, VIIA −1; transition metals → multiple ox states (Fe²⁺/Fe³⁺)
- Polyatomic ions (must memorise): \text{SO}4^{2-},\text{NO}3^-,\text{OH}^-,\text{NH}_4^+,…
- Formula prediction: criss-cross; Na⁺ + Cl⁻ → NaCl; Mg²⁺ + Br⁻ → MgBr₂
- Naming
- Metal (roman numeral) + nonmetal-ide (CuCl₂ = copper(II) chloride)
- Polyatomic stays intact (NH₄)₂SO₄ = ammonium sulfate
- Electrolytes conduct (ionic), nonelectrolytes don’t (covalent)
Covalent Bonding (Ch. 6)
- Atoms share e⁻ pairs to fill valence shells; single/double/triple bonds; \text N_2 has triple
- Representations
- Lewis structures (dots/dashes), electron-dot, condensed
- Bond polarity & EN
- \Delta EN
- Polar bonds ⇒ molecular dipoles ⇒ H-bonding (O–H,N–H,F–H)
Chemical Reactions (Ch. 7)
- Types
- Combination, Decomposition, Single- & Double-Displacement (precipitation/neutralisation), Combustion, Redox
- Collision theory: proper orientation + sufficient E_a ⇒ reaction
- Energy diagrams; exothermic (heat product) vs endothermic
- Balancing: adjust coefficients to satisfy law of mass conservation (e.g. \text{C}4\text H{10}+13O2→8CO2+10H_2O)
- Equilibrium K_{eq}=\frac{[products]}{[reactants]}
- Le Chatelier: stress by \Delta[conc], \Delta T, \Delta P shifts position
- Kinetics: rate ↑ with T, [reactants], catalysts; activation energy lowered by catalysts (hetero/homo)
Electrochemistry (Ch. 8)
- Redox basics
- Oxidation = e⁻ loss; reduction = e⁻ gain; LEO goes GER
- \text{Zn}→\text{Zn}^{2+}+2e^-, \text{Cu}^{2+}+2e^-→\text{Cu}
- Balancing redox (acidic): split into half-rxns, balance O with \text H_2\text O, H with \text H^+, add e^-, equalise e^-, combine
- Galvanic (voltaic) cells: spontaneous redox → electricity; anode(−) oxidation, cathode(+) reduction; Daniell Zn/Cu cell ~1.1 V
- Electrolytic cells: electricity drives non-spontaneous redox; electroplating, water electrolysis 2H2O→2H2+O_2
- Rechargeables: Pb storage battery: discharge \text{Pb}+\text{PbO}2+2H2SO4→2PbSO4+2H_2O, reverse when charging
The Mole & Stoichiometry (Ch. 9)
- 1\text{ mol}=6.022\times10^{23} particles (Avogadro)
- Gram–mole link: grams ÷ molar mass ⇒ mol; mol × molar mass ⇒ grams
- Empirical vs molecular formulas; percentage → empirical → molecular
- Reaction stoichiometry: coefficients = mole ratios; limiting reagent, theoretical & % yield \%\text{yield}=\frac{actual}{theoretical}×100
Solutions & Concentrations (Ch. 10)
- Terminology: solvent (largest), solute(s)
- Solubility g/100 mL varies with T; saturated/unsaturated/supersaturated
- Units
- % (w/w, w/v, v/v), ppm/ppb, M=\frac{mol\,solute}{L\,solution}, m=\frac{mol\,solute}{kg\,solvent}
- Dilution M1V1=M2V2
- Colligative props: ⬆ boiling-point, ⬇ freezing-point proportional to molality; osmotic pressure
Acids & Bases (Ch. 11)
- Brønsted–Lowry: acid = H^+ donor; base = H^+ acceptor; conjugate acid-base pairs
- Strong: complete ionisation (HCl, HBr, HI, HNO3,HClO4,H2SO4 1st); strong bases (IA, IIA hydroxides)
- Weak: partial ionisation; Ka,Kb equilibrium constants (acetic acid K_a=1.8×10^{-5})
- Water auto-ionisation Kw=[H3O^+][OH^-]=1.0×10^{-14}
- pH =−\log[H_3O^+]; pH+pOH=14; indicators: litmus (red acid/blue base), phenolphthalein (acid clear/base pink)
- Titrations: neutralisation stoichiometry → unknown M determination
Gases & Gas Laws (Ch. 12)
- Kinetic Molecular Theory: gas particles tiny, far apart, continuous random motion, elastic collisions, negligible forces, T\propto KE_{avg}
- Laws
- Boyle PV=k ((P1V1=P2V2))
- Charles V/T=k, Gay-Lussac P/T=k, combined \frac{P1V1}{T1}=\frac{P2V2}{T2}
- Avogadro V/n=k; 1 mol gas at STP ⇒ 22.4 L
- Ideal gas law PV=nRT with R=0.0821\;L·atm·K^{-1}·mol^{-1}
Nuclear & Industrial “Happy Accidents” (Ch. 13)
- Archimedes’ density test ➜ Eureka principle
- Goodyear’s hot rubber + S ➜ vulcanised rubber
- Pasteur’s tartaric enantiomers ➜ molecular chirality
- Perkin’s black gunk ➜ fi rst synthetic dye (mauve)
- Kekulé’s dream ➜ benzene ring
- Becquerel’s fogged plate ➜ radioactivity
- Plunkett’s clogged TFE tank ➜ Tefl on®
- 3M’s weak glue ➜ Post-it® note
- Minoxidil side-effect ➜ hair-growth drug
- Saccharin & aspartame ➜ accidental sweeteners
Key Equations to Remember
- d=\frac m v (density) q=m·c·ΔT (heat) PV=nRT (ideal gas)
- t_{1/2}=\frac{0.693}{k} (1st-order decay) E=mc^2 (mass–energy)
- Kw=1.0×10^{-14}=10^{-pH}·10^{-pOH} pH=-\log[H3O^+]
- Stoichiometry roadmap: g ↔ mol ↔ mol ↔ g
“Like-dissolves-like, opposites attract, and electrons do all the work.”