Definition: The square root property states that if ax2=c$$ax^2 = c$$, then x=ext±racext√cext√a$$x = ext{±} rac{ ext{√}c}{ ext{√}a}$$.
Problem (a): Solve the equation 2x2=98$$2x^2 = 98$$.
Step 1: Divide both sides by 2: x2=49$$x^2 = 49$$.
Step 2: Taking the square root of both sides: x=ext±ext√49$$x = ext{±} ext{√}49$$.
Final Solutions: x=7$$x = 7$$ or x=−7$$x = -7$$.
Problem (b): Solve the equation y2=81$$y^2 = 81$$.
Step 1: Taking the square root of both sides: y=ext±ext√81$$y = ext{±} ext{√}81$$.
Final Solutions: y=9$$y = 9$$ or y=−9$$y = -9$$.
Definition: Completing the square involves rewriting a quadratic equation in the form a(x−h)2=k$$a(x-h)^2 = k$$.
Problem (a): Solve the equation x2+6x+4=0$$x^2 + 6x + 4 = 0$$.
Step 1: Move the constant to the other side: x2+6x=−4$$x^2 + 6x = -4$$.
Step 2: Take half of the coefficient of x (which is 6), square it: (rac62)2=9$$( rac{6}{2})^2 = 9$$.
Step 3: Add 9 to both sides: x2+6x+9=5$$x^2 + 6x + 9 = 5$$.
Step 4: Factor the left side: (x+3)2=5$$(x + 3)^2 = 5$$.
Step 5: Take the square root of both sides: x+3=ext±ext√5$$x + 3 = ext{±} ext{√}5$$.
Final Solutions: x=−3+ext√5$$x = -3 + ext{√}5$$ or x=−3−ext√5$$x = -3 - ext{√}5$$.
Problem (b): Solve the equation x2+10x+8=0$$x^2 + 10x + 8 = 0$$.
Step 1: Move the constant to the other side: x2+10x=−8$$x^2 + 10x = -8$$.
Step 2: Take half of the coefficient of x (which is 10), square it: (rac102)2=25$$( rac{10}{2})^2 = 25$$.
Step 3: Add 25 to both sides: x2+10x+25=17$$x^2 + 10x + 25 = 17$$.
Step 4: Factor the left side: (x+5)2=17$$(x + 5)^2 = 17$$.
Step 5: Take the square root of both sides: x+5=ext±ext√17$$x + 5 = ext{±} ext{√}17$$.
Final Solutions: x=−5+ext√17$$x = -5 + ext{√}17$$ or x=−5−ext√17$$x = -5 - ext{√}17$$.
Quadratic Equations and Methods
Problem (a): Solve the equation 2x2=98.
Problem (b): Solve the equation y2=81.
Problem (a): Solve the equation x2+6x+4=0.
Problem (b): Solve the equation x2+10x+8=0.