NB

1.1 Real Numbers and Sets and Intervals - College Algebra (Math 1150)

1. Classifying Real Numbers

  • Real Numbers Organization
    • Natural numbers: \,N={1,2,3,\ldots}\;
    • Whole numbers: W=\{0,1,2,3,\ldots}\;
    • Integers: Z=\{\ldots,-3,-2,-1,0,1,2,3,\ldots}\;
    • Rational numbers: \mathbb{Q}={\frac{p}{q}\;|\, p\in\mathbb{Z},\; q\in\mathbb{N},\; q\neq 0}\;
    • Irrational numbers: cannot be written as a ratio of two integers. Examples: \sqrt{2},\;\sqrt{5},\;\pi
    • Real numbers: \mathbb{R}=\mathbb{Q}\cup{\text{irrational numbers}}\;
  • Decimal representations of rational numbers
    • Terminating decimals: examples include
    • \tfrac{1}{2}=0.5
    • \tfrac{3}{4}=0.75
    • 6.55=\tfrac{655}{100}
    • Non-terminating repeating decimals: examples include
    • 0.285714\overline{285714} = 0.\overline{285714}=\tfrac{2}{7}
  • Examples and clarifications
    • Rational numbers can yield terminating or repeating decimals.
    • Irrational numbers have non-terminating, non-repeating decimals.
  • The real number line and coordinates
    • One-to-one correspondence: each real number corresponds to a unique point on the line.
    • Origin is the point for coordinate 0.
    • Positive real numbers lie to the right of the origin; negative numbers to the left.
    • The real number line is a geometric representation of (\mathbb{R}).

2. The Real Numbers: The Real Number Line and Key Checks

  • True/False quick checks (from the transcript)
    • Is (-1.5) rational? True
    • Is (4) an integer, a rational number, and a real number? True
    • Is (81) irrational? False ((81=9^2) is rational)
    • Is (-\sqrt{12}) irrational? True (since (\sqrt{12}=2\sqrt{3}) is irrational)

2. The Real Number Line and Graphs

  • The real number line associates every real number with exactly one point:
    • The coordinate of the point is the real number itself.
    • The origin corresponds to coordinate 0.
  • Graph and coordinate language
    • Real number: the coordinate; Graph shows position on the line.

3. Sets and Intervals

  • Sets
    • A set is a collection of objects (elements).
    • Notation examples:
    • A=\\\{1,2,3,4,5,6}\n
    • A={x\;|\; x\in \mathbb{N}\;\text{and}\; x<7}\n
  • Set operations
    • Union: A\cup B contains all elements in A or B (without duplicates).
    • Intersection: A\cap B contains elements common to A and B.
  • Example
    • Let A={-2,-1,0,1,2}, B={-4,-2,0,2,4}, C={-3,3}.
    • A\cap B={-2,0,2}
    • A\cup B={-4,-2,-1,0,1,2,4}
    • A\cap C=\emptyset\n
  • Intervals
    • Open interval: ((a,b) = {x\;|\; a<x<b}) (excluding endpoints)
    • Closed interval: ([a,b] = {x\;|\; a\le x\le b}) (including endpoints)
    • Unbounded intervals:\n - ((a,\infty) = {x\;|\; x>a})\n - ((-
      \infty,b) = {x\;|\; x<b})\n - ((-
      \infty,\infty) = {x\in \mathbb{R}}\n- Notation vs. Graph
    • Interval notation uses parentheses or brackets to indicate endpoint inclusion and whether the interval is open/closed.
    • Graphical representations use open circles for open endpoints and closed circles for closed endpoints.
  • Union and intersection of intervals (example)
    • If I=(-3,4) and J=[2,6], then
    • I\cup J = (-3,6]
    • I\cap J = [2,4)

3. Checks for interval operations

  • Example true/false checks
    • Given I=(-x,5) and J=[-2,\infty), then
    • (I\cup J = (-\infty, -2]) is False
    • (I\cup J = (-\infty, \infty)) is True
    • (I\cap J = [-2,5)) is True
  • A note on endpoint inclusion: -2 belongs to both I and J; 5 belongs to J but not I.

4. Absolute Value and Distance

  • Absolute value
    • Definition: for real number (a),
      |a|=\begin{cases}a,& a\ge 0\-a,& a<0\end{cases}
    • Examples:
    • |4|=4
    • |{-4}|=4
    • |0|=0
    • |(-3)+1|=| -2|=2
    • |2(-3)+7|=|-6+7|=|1|=1
  • Geometric interpretation
    • Absolute value is the distance of a real number from the origin on the number line.
    • Distance from the origin for coordinate (a) is |a|\;.
  • Distance between two points on a real number line
    • If the coordinates are (a) and (b), then
      d(a,b)=|a-b|
    • Examples:
    • d(-3,4)=|(-3)-4|=| -7|=7
    • d(4,-3)=|4-(-3)|=|7|=7
  • Quick checks
    • Intuition: distance is always nonnegative; absolute value yields a nonnegative result.

4. Evaluations and Quick Checks

  • Sample evaluations (illustrative, aligned with the style of the notes):
    • Evaluate: 7 (as a standalone value) → 7
    • Evaluate: 74-10 → 64
    • Find distance: d(-7,2)=|(-7)-2|=| -9|=9

5. Mathematical Expressions

  • Vocabulary
    • A term: a constant, a variable, a parenthetical group, or a product of these.
    • Examples of terms: 6,\, 5x^2,\, x y (x+2),\, 3\sqrt{7} (illustrative examples; formatting may vary in notes)
    • A mathematical expression consists of terms separated by + and − signs.
    • Examples of expressions: 3.25+4,\, 2x^2-xy+4,\, xy(x+2),\, 7+\sqrt{7}
    • The value of the expression is the result of performing the arithmetic operations or substituting numbers for the variables.
  • Order of Operations (PEMDAS)
    • P: Parentheses, brackets, braces, fraction bars, absolute value bars, radicals.
    • E: Exponents (including roots).
    • MD: Multiplication and Division from left to right.
    • AS: Addition and Subtraction from left to right.
  • Examples (step-by-step)
    • Example 1: 3.25+4
    • Value: 3.25+4=7.25
    • Example 2: (-3)\cdot 5+20
    • Step: (-3)\cdot 5=-15; then -15+20=5
    • Example 3: 5-12\div 6\cdot 2
    • Division/Multiplication left to right: 12\div 6=2; 2\cdot 2=4
    • Then 5-4=1
    • Example 4: -3+ (6-4)^2
    • Inside parentheses: 6-4=2; square: 2^2=4; then -3+4=1
  • Evaluating algebraic expressions (variable substitution)
    • Example: Evaluate expression \frac{(9+x)}{7} for (x=5)
    • Substitution: (9+5=14); then value is \frac{14}{7}=2\;.

5. Properties of Real Numbers

  • Fundamental properties (for real numbers (a,b,c))
    • Addition (Commutative):
      a+b=b+a
    • Addition (Associative):
      a+(b+c)=(a+b)+c
    • Multiplication (Commutative):
      ab=ba
    • Multiplication (Associative):
      (ab)c=a(bc)
    • Distributive:
      a(b+c)=ab+ac
  • Identity and Inverse
    • Additive identity: there exists a unique real number 0 such that a+0=a\;\forall a\in\mathbb{R}
    • Multiplicative identity: there exists a unique real number 1 such that a\cdot 1=a\;\forall a\in\mathbb{R}
    • Additive inverse: every real number a has an opposite (-a) with a+(-a)=0
    • Multiplicative inverse (reciprocal): every nonzero real number a has an inverse such that a\cdot a^{-1}=1\; (a\neq 0)
  • Examples illustrating the properties
    • Commutative: (-2)+7=7+(-2) and (-11)(-4)=(-4)(-11)
    • Associative: (15+(-9))+23=15+((-9)+23) and (3\cdot 4)\cdot 5 = 3\cdot(4\cdot 5) = 60
    • Distributive: 4(12-7)=4\cdot12+4\cdot(-7)
    • Identity: -6+0=-6\;\text{ and }\;23\cdot1=23
    • Inverse: 3\cdot \tfrac{1}{3}=1

Connections, implications, and practice

  • Connections to foundations
    • Classifications (N, W, Z, Q, irrationals) underpin number theory and algebraic structure.
    • Real number line enables geometry of inequalities, intervals, and function domains.
    • Set operations and interval notation are essential for solving inequalities and describing solution sets.
  • Practical implications
    • Understanding decimal representations helps in identifying rational vs irrational numbers.
    • Absolute value and distance are fundamental in measuring magnitude and in defining metrics.
    • Order of operations ensures unambiguous evaluation of expressions across disciplines.
  • Ethical/philosophical notes (brief)
    • Clear notation avoids misinterpretation in mathematical communication.
    • Precise definitions (e.g., what counts as a number, what is an interval) underpin rigorous reasoning.

Key formulas and notations to remember

  • Real number classifications: \mathbb{N},\;\mathbb{W},\;\mathbb{Z},\;\mathbb{Q},\;\mathbb{R} with definitions above.
  • Rational number set: \mathbb{Q}={\tfrac{p}{q}\;|\;p\in\mathbb{Z},\; q\in\mathbb{N},\; q\neq 0}
  • Decimal types: terminating vs repeating decimals, with example relationships to fractions.
  • Absolute value: |a|=\begin{cases}a,& a\ge 0 \\ -a,& a<0\end{cases}
  • Distance on the number line: d(a,b)=|a-b|
  • Interval notations: open (a,b) = {x\in\mathbb{R}\;|\;a<x<b} , closed [a,b] = {x\in\mathbb{R}\;|\;a\le x\le b} , unbounded (a,\infty),\ (-\infty,b),\ (-\infty,\infty)
  • Set operations: A\cup B,\; A\cap B
  • Order of Operations: PEMDAS (Parentheses, Exponents, Multiplication/Division, Addition/Subtraction)
  • Basic properties: Commutative, Associative, Distributive, Identity, Inverse

Title: 1.1 Real Numbers: Algebra Essentials — Comprehensive Study Notes