Unit 1 Quick Reference: Measurements and SI Units

Scientific Method

  • Scientific Method: approach to acquire knowledge through observation of phenomena.

  • Experiment: observation tested in a controlled, repeatable process; leads to a rational conclusion.

  • Hypothesis: tentative, testable explanation for observations.

  • Theory: tested explanation of basic natural phenomena.

  • Law: summarizes a vast number of observations and describes/predicts aspects of the natural world.

  • Process (summary): Observe phenomena

    form hypothesis

    make predictions

    test with experiment

    analyze results

    evaluate hypothesis

    refine or reject

    establish theory

    report findings

    reproduce results.

Measurements and Uncertainty

  • Measurements are essential for characterizing properties; two key parts: standardization of units and precision/accuracy.

  • Precision: agreement among repeated measurements.

  • Accuracy: agreement between measured value and true/accepted value.

  • Uncertainty: most measurements have some uncertainty; last digit is often estimated.

  • Digital instruments: output a certain value plus one uncertain digit.

  • Analog instruments: readings based on markings; uncertainty estimated by user.

  • Significant figures: reflect certain digits plus one estimated digit.

Significant Figures (SF)

  • Rules:

    • Nonzero integers are always significant: 7256

    4 sig figs; 8.29

    3 sig figs.

    • Leading zeros are not significant: 0.0392

    3 sig figs.

    • Trailing zeros are not significant unless after a decimal point: 8200

    2 sig figs; 6230.00

    6 sig figs.

    • Captive zeros are significant: 43.07

    4 sig figs.

    • Exact numbers have infinite sig figs: 1 penny, 1 L = 1000 mL, 1 in = 2.54 cm.

  • Exact numbers have unlimited sig figs; use them accordingly in calculations.

Scientific Notation

  • Representation: A.XX \times 10^{n} with 1 \le A < 10 and n integer; all digits in A are significant.

  • Examples: 437000

    4.37\times 10^{5}; 0.009740

    9.740\times 10^{-3}

Significant Figures in Mathematical Operations

  • Multiplication/Division: sig figs in result = least number of sig figs among inputs.

    • Example: 16.84 / 2.54 = 6.6299 has 3 sig figs

    use 6.63.

  • Addition/Subtraction: number of decimal places in result = least precise decimal place among inputs.

    • Example: 68 + 1190 = 1258

    3 sig figs shown as appropriate by decimal places; effectively align decimal places.

  • Practice: carry all digits through calculations, then round only at the end; track SFs for each step if multiple steps (PEMDAS).

Rounding Practice

  • Round (1.23 g - 0.567 g) to appropriate SFs: 0.34442 \text{ cm}^3

    rounded value according to SF rule.

SI Units (Base Units)

  • Length: \text{m} \text{(meter)}, Symbol: m

  • Mass: \text{kg} \text{(kilogram)}, Symbol: kg

  • Time: \text{s} \text{(second)}, Symbol: s

  • Temperature: \text{K} \text{(Kelvin)}, Symbol: K

  • Amount of substance: \text{mol} \text{(mole)}, Symbol: mol

  • Electric current: \text{A} \text{(ampere)}, Symbol: A

SI Derived Units

  • Area: m^2

  • Volume: m^3

  • Density: \frac{kg}{m^3}

  • Speed: \frac{m}{s}

  • Acceleration: \frac{m}{s^2}

  • Force: kg\cdot \frac{m}{s^2} (newton, N)

  • Pressure: \frac{kg}{m\cdot s^2}

  • Energy: kg\cdot \frac{m^2}{s^2}

SI Prefixes

  • Tera (T): 10^{12}

  • Giga (G): 10^{9}

  • Mega (M): 10^{6}

  • Kilo (k): 10^{3}

  • Hecto (h): 10^{2}

  • Deca (da): 10^{1}

  • Deci (d): 10^{-1}

  • Centi (c): 10^{-2}

  • Milli (m): 10^{-3}

  • Micro (µ): 10^{-6}

  • Nano (n): 10^{-9}

  • Pico (p): 10^{-12}

  • Example conversions shown on slide (e.g., 1 m = 1 \times 10^{3} mm, 1 m = 10^{2} cm, etc.).

Conversion Factors (selected)

  • Length: 1\text{ in} = 2.54\text{ cm} (exact); 1\text{ cm} = 0.39370\text{ in}; 1\text{ m} = 39.37\text{ in}

  • Mass: 1\text{ kg} = 2.2046\text{ lb}; 1\text{ lb} = 453.59\text{ g}

  • Volume: 1\text{ L} = 10^{-3}\text{ m}^3 = 1\text{ dm}^3 = 1000\text{ mL}

  • Density/Volume relationships and common equivalences are listed where needed.

  • Note: 1 in^3 = 16.39 cm^3 (approx 16.4 cm^3).

Temperature Scales and Conversions

  • Fahrenheit to Celsius and Kelvin:

    • K = {}^\circ C + 273.15

    • ^\circ C = K - 273.15

    • ^\circ C = \frac{5}{9}\left(^\circ F - 32\right)

    • ^\circ F = {}^\circ C \left(\frac{9}{5}\right) + 32

  • Use same precision as the measured temperature during conversion.

Dimensional Analysis (Unit Analysis)

  • Method: carry units through calculations to convert from starting units to desired units.

  • Example concept: convert mass/weight and volume through unit factors to compute results; track units at every step.

Big Problem (Unit Conversions & Dosing Concept)

  • Problem setup (from slides): dose = 3\ \text{mg per kg per day}; weight in pounds (lbs); concentration = 4.0000\ \text{mg/mL}; bottle price = 27.99\; price per volume = 0.89\\,/\text{in}^3.

  • Key formulas:

    • Dose per administration (twice daily):

      \text{mg per dose} = \left(3\ \text{mg/kg/day}\right) \times \text{(weight in kg)} \div 2

    • Convert weight to kg: 1\ \text{kg} = 2.2046\ \text{lb};

      weight(kg) = \frac{\text{weight(lb)}}{2.2046}

    • Bottle volume from price: V_{\text{bottle}} = \frac{27.99}{0.89}\ \text{in}^3

    • Convert bottle volume to mL: V{\text{bottle}}(\text{mL}) = V{\text{bottle}} \times 16.387

    • Total mg in bottle: \text{Total mg} = V_{\text{bottle}}(\text{mL}) \times 4.0000\ \text{mg/mL}

    • Doses per bottle: N = \left\lfloor \dfrac{\text{Total mg}}{\text{mg per dose}} \right\rfloor

  • Note: Final numeric value depends on the patient

's weight in pounds; the framework above shows how to compute.

Summary Concepts and Equations

  • Core ideas: Scientific Method; Measurements & Units; Precision & Accuracy; Sig figs; Unit Conversions; Temperature Conversions; Dimensional Analysis.

  • Key equations:

    • K = {}^\circ C + 273.15

    • ^\circ C = K - 273.15

    • ^\circ C = \frac{5}{9}\left(^\circ F - 32\right)

    • ^\circ F = {}^\circ C \left(\frac{9}{5}\right) + 32