Voltammetric Detection of Cadaverine with DAO-MWCNT Electrochemical Biosensor
Citation & Publication Details
Article: “The Voltammetric Detection of Cadaverine Using a Diamine Oxidase and Multi-Walled Carbon Nanotube Functionalised Electrochemical Biosensor.”
Journal: Nanomaterials, 2023, Vol 13, Article 36. DOI: 10.3390/nano13010036.
Authors: Mohsin Amin, Badr M. Abdullah, Stephen R. Wylie, Samuel J. Rowley-Neale, Craig E. Banks, Kathryn A. Whitehead.
Key dates: Received 5 Oct 2022 → Revised 2 Dec 2022 → Accepted 16 Dec 2022 → Published 22 Dec 2022.
License: Creative Commons CC-BY 4.0 (open access).
Biological Background: Cadaverine & Periodontal Disease
Cadaverine = biogenic diamine; class: polyamines.
Produced by bacterial decarboxylation of lysine; present in eukaryotic + prokaryotic cells.
Implicated in inflammatory modulation by disrupting host cell-signalling → sustained inflammation [Refs 1–5].
Elevated salivary cadaverine correlates with periodontal disease severity (mild → moderate → severe) and tooth loss.
Oxidation by Diamine Oxidase (DAO) yields 5-aminobutanal + H2O2, generating a measurable oxidation peak.
Existing Analytical Techniques & Limitations
LC-MS, HPLC (fluorescence with o-phthaldialdehyde derivatisation) widely used for food spoilage / clinical diagnostics.
Drawbacks: high cost, trained personnel, long turnaround, off-site labs, complex sample prep.
Clinical periodontal assessment still relies on
• Clinical Attachment Level (CAL)
• Bleeding on Probing (BOP)
• Pocket Depth (PD)
– Qualitative, operator-dependent, retrospective, not real-time.
Rationale for Electrochemical Biosensor
Biosensors offer: point-of-care, low-cost, miniaturisation, real-time, minimal sample prep.
Electrochemical modes: impedimetric, potentiometric, amperometric; current work = amperometric (CV & DPV).
Carbon nanomaterials (graphene, CNTs) increase surface area → higher enzyme loading, faster electron transfer.
MWCNT advantages: high conductivity, multiple active sites, ease of chemical functionalisation, improved enzyme orientation.
Screen-Printed Electrode (SPE) Fabrication
Substrate: polyester film (Autostat).
Inks/layers:
• Working + counter electrodes: carbon graphitic ink; diameter 3.1\;\text{mm}.
• Reference: Ag/AgCl printed layer.
• Dielectric mask to insulate tracks.Printing tool: DEK 248 screen printer.
Thermal curing: 60^{\circ}\text{C} for 30 min after each layer.
Multi-Walled Carbon Nanotube (MWCNT) Functionalisation Workflow
Carboxylation
Acid mix H2SO4 (7.5\;\text{mL}) + HNO_3 (2.5\;\text{mL}); 2\;\text{mg} MWCNT; sonicate 6\;\text{h} at 80^{\circ}\text{C}.
EDC/NHS Activation (zero-length coupling)
Suspend carboxylated MWCNT in MES buffer (50\;\text{mM}, pH 6.5).
Add EDC (10\;\text{mg mL}^{-1}, 1.2\;\text{mL}) → 1 h RT.
Add NHS (50\;\text{mg mL}^{-1}, 2.2\;\text{mL}) → 1 h at 37^{\circ}\text{C}.
Enzyme Conjugation
DAO solution 10\;\text{mg mL}^{-1} in 0.1\;\text{M} phosphate buffer.
Incubate 2\;\text{mg} MWCNT/EDC-NHS with DAO 37^{\circ}\text{C}, 1 h, 200\;\text{rpm}.
Glutaraldehyde (GA) Crosslinking
Add 1\;\text{mL} of 0.2\% GA, shake 30 min RT, then overnight 4^{\circ}\text{C}.
Washing & Storage
Tris buffer (100\;\text{mM}, pH 7.2) rinse; store in 0.1\;\text{M} MES at 4^{\circ}\text{C}.
Electrode Functionalisation
Drop-cast 10\;\mu\text{L} homogeneous C-MWCNT/DAO/EDC-NHS/GA suspension on SPE working electrode; dry 1 h.
Store each SPE in 1\;\text{mL} MES until use.
Physico-Chemical Characterisation
Fourier Transform Infra-Red (FTIR)
Pristine MWCNT: characteristic C=C stretch at \sim1600\;\text{cm}^{-1}.
Modified MWCNT peaks:
• Carbonyl C=O stretch \sim3500\;\text{cm}^{-1} (weak).
• C{-}H stretch \sim2800\;\text{cm}^{-1}.
• C{=}NH^+ 2363\;\text{cm}^{-1}.
• C{-}N 1100\;\text{cm}^{-1}.
• Carboxyl O–H 1715\;\text{cm}^{-1}, C–O 1300\;\text{cm}^{-1}.
→ Confirms DAO + linker attachment.
Energy Dispersive X-ray (EDX)
Unmodified surface: C, O, Na, P, S.
After modification: new N, Si, Cl signals (from DAO, EDC, NHS).
Electrochemical Measurement Conditions
Potentiostat: EmStat3 (PalmSens); software PS-Trace 5.8.
Cell: 3-electrode with nickel wire counter, on-chip Ag/AgCl reference.
Supporting electrolyte: 0.1\;\text{M} KCl + Britton–Robinson buffer (pH 6 unless stated).
Cyclic Voltammetry (CV): potential window [-0.5,\; +1.0]\;\text{V}, scan rates 5–500\;\text{mV s}^{-1}.
Differential Pulse Voltammetry (DPV): window [-0.3,\; +0.7]\;\text{V}.
Electrochemical Results & Interpretation
Unmodified SPE
At cadaverine 30\;\mu\text{g mL}^{-1} → no discernible redox peaks → molecule electrochemically silent without catalyst.
Modified C-MWCNT/DAO/EDC-NHS/GA SPE
Clear redox pair:
• Anodic (cadaverine oxidation via DAO → 5-aminobutanal + H2O2).
• Cathodic (reduction of generated H2O2).Scan-rate study:
• Plot I_p vs \sqrt{\text{scan rate}} linear ( R^2=0.91 ).
• log–log plot slope 0.29 ≈ theoretical 0.5 for diffusion-controlled, non-porous interface.
Calibration & Analytical Figures
DPV used for quantitation.
Concentration range tested: 3 – 150\;\mu\text{g mL}^{-1}.
Peak current window: \sim32.2 – 43.1\;\mu\text{A} (reported also 140 – 204\;\mu\text{A} due to scaling differences).
Dual linear segments observed (low vs high region) → overall linearity maintained.
Limit of Blank (LOB): background response with no analyte.
Limit of Detection (LOD): \text{LOD}=\text{LOB}+3\sigma_{\text{blank}} \Rightarrow 0.8\;\mu\text{g mL}^{-1}.
Sensitivity superior to previous MAO-based biosensor (LOD 19.9\;\mu\text{M}) and laser-scribed graphene device (LOD 50\;\mu\text{M}).
pH Dependence
Tested pH 2–12.
Oxidation peak potential E_{pa} increases linearly with pH up to pKa of cadaverine (10.25 at 25^{\circ}\text{C}); beyond this, deviation observed.
DAO activity & electron transfer thus strongly pH-linked; optimal near physiological pH 6–7.
Performance in Artificial Saliva (Proof-of-Concept TRL Upgrade)
Composition per Pytko-Polonczyk et al. [49].
At cadaverine 30\;\mu\text{g mL}^{-1} DPV shows:
• Narrower potential spread.
• Comparable peak current → negligible interference from salivary constituents.Confirms viability for non-invasive oral diagnostics.
Comparative Table (Literature vs This Work)
Meat/fish spoilage sensor: LOD 3\;\mu\text{g kg}^{-1} (chromatographic) – [33].
Disposable MAO SPE (cadaverine + putrescine): LOD 9.9/19.9\;\mu\text{M} – [32].
Present C-MWCNT/DAO SPE: LOD 0.8\;\mu\text{g mL}^{-1} (≈ 7.8\;\mu\text{M}) – highest sensitivity among electrochemical formats to date.
Advantages, Implications & Future Directions
Rapid (~minutes), low-cost, room-temperature, no derivatisation.
Drop-cast fabrication easily scalable; compatible with roll-to-roll printing.
Enzyme layer can be substituted to target other biogenic amines or metabolites → modular platform.
Potential deployment as chair-side periodontal status indicator or food-spoilage tester.
Further work: long-term stability, real human saliva trials, multiplexing, wireless data acquisition, integration into microfluidics.
Experimental & Statistical Notes
All reagents analytical grade from Merck (Sigma-Aldrich).
Water: Type 1, resistivity 18.2\;\text{M}\Omega\,\text{cm}, N$_2$‐degassed.
Statistics: GraphPad Prism 9; unpaired t-tests and 1/2-way ANOVA; significance threshold p<0.05.
Ethical, Philosophical & Practical Considerations
Provides objective, quantitative periodontal monitoring, reducing clinician bias.
Promotes preventative dentistry; early intervention → lower healthcare costs.
Open-access publication ensures reproducibility and widespread adoption.
Sustainable manufacturing (screen-printing, minimal precious metals) aligns with green chemistry goals.