Molecular Orbitals Theory
Molecular Orbitals (MO) Theory
Definition of MO Theory: MO = Linear Combination of Atomic Orbitals (LCAO).
- Number of initial Atomic Orbitals (AOs) equals the number of final Molecular Orbitals (MOs).
For 2-atom molecules:
- Each MO can be represented as either AO1 ± AO2:
- Bonding Molecular Orbital (MO):
- Defined as (MO = AO1 + AO2)
- Probability of finding electrons (ē) between nuclei is HIGH.
- Bonding MO is lower in energy compared to antibonding MO.
- Anti-bonding Molecular Orbital (MO):
- Defined as (MO = AO1 - AO2)
- Probability of finding ē between nuclei is LOW, which can reach 0.
- Anti-bonding MO is higher in energy compared to bonding MO.
Electrons in Molecular Orbitals
Population of Electrons:
- The number of electrons in atomic orbitals (AOs) equals the number of electrons in molecular orbitals (MOs).
- MOs are populated according to principles also applied to AOs:
- Aufbau Principle: Electrons fill the lowest energy orbitals first.
- Pauli Exclusion Principle: No two electrons can have the same set of quantum numbers.
- Hund’s Rule: Electrons will occupy degenerate orbitals singly before pairing up.
Molecular Orbital Energy Diagrams:
- Diagrams depict the relative energies and number of electrons in each MO.
- Electronic configurations can be written in a manner analogous to that of AOs.
Bond Order Calculation:
- Bond order is determined using the formula:
- Bond ext{ } order = \frac{# \text{ of } ē ext{ in bonding } MO - # \text{ of } ē ext{ in anti-bonding } MO}{2}
- Interpretations:
- If bond order > 0, the molecule is more stable than the separate atoms.
- If bond order = 0, the molecule is as stable as separate atoms (indicating that the molecule will not form).
Comparison of VB Theory and MO Theory
- Valence Bond (VB) Theory vs. Molecular Orbital (MO) Theory:
- Bonds:
- VB theory considers bonds as localized between each pair of atoms.
- MO theory describes electrons as delocalized throughout the entire molecule.
- Method of Bond Formation:
- VB theory forms bonds through the overlap of atomic orbitals (s, p, d, etc.) and hybrid atomic orbitals (sp, sp2, sp3, etc.).
- MO theory combines AOs to form Molecular Orbitals (σ, σ, π, π).
- Bonding Types:
- VB theory forms sigma (σ) or pi (π) bonds.
- MO theory forms bonding and antibonding molecular orbitals.
- Bond Order Calculation:
- In VB theory, bond order is the number of electron pairs between atoms.
- In MO theory, the same formula for bond order applies as mentioned earlier.
- Predictions:
- VB theory predicts molecular shape based on the number of regions of electron density.
- MO theory predicts the arrangement of electrons in molecules and does not use the concept of resonance.
- Terminology:
- Definitions: AO = Atomic Orbital, MO = Molecular Orbital, HAO = Hybrid Atomic Orbital.
Types of Molecular Orbitals
- Types of MOs:
- Bonding MOs: e.g., $ ext{σ}_{1s}$
- Anti-bonding MOs: e.g., $ ext{σ}^*_{1s}$
- Characteristics of MOs:
- Bonding MOs have constructive interference of wave functions.
- Anti-bonding MOs have destructive interference of wave functions.
Energy of MOs for 2nd Period Homonuclear Molecules
Molecular Orbitals for 2nd Period Molecules:
- The analysis ignores 1s AOs and associated molecular orbitals (s1s and s*1s), as those are fully occupied and do not affect bond orders.
Energy Levels for 2nd Period Homonuclear Diatomic Molecules:
- The focus is primarily on the arrangement of MOs, applied using the Aufbau principle and Hund’s rule for electron configuration calculations.
Summary of Molecular Orbitals
Example: Li2 molecule
- Bond order = 1
- Energy = 102 kJ/mol
- Bond length = 267 pm
- Description: Li2 is diamagnetic.
Example: Be2 molecule
- Bond order = 0
- Description: Be2 does not exist due to its unstable nature.
Molecular Orbitals for Heteronuclear Diatomic Molecules
Characteristics:
- Atomic orbital energy levels differ, even among the same types of orbitals due to differences in nuclear charge and electronegativity.
- Higher effective nuclear charge (zeff) leads to lower energy AOs.
- Resulting MO energy levels are asymmetrical relative to AOs.
- Bonding MOs are closer in energy to lower-energy AOs (e.g., more electronegative atoms).
- Anti-bonding MOs are closer in energy to higher-energy AOs.
- Formation of MOs:
- MOs are formed using LCAO, but coefficients differ:
- MOi = c1 AO1 ext{ } ± ext{ } c2 AO_2
- Non-bonding MOs:
- These derive from atomic orbitals that do not participate in bonding, analogous to lone electron pairs in VB theory.
Bond Order Calculation for Heteronuclear Diatomic Molecules:
- As previously defined, bond order is calculated using the formula for bonding and antibonding electrons:
- Bond ext{ } order = \frac{# \text{ of } ē ext{ in bonding } MO - # \text{ of } ē ext{ in anti-bonding } MO}{2}
- Importance of this calculation in defining the stability of the molecule based on its electronic structure.