solutions MA

Assignment Details

  • Course: Lan V. Truong

  • Submission Platform: Faser

  • Deadline: 22/03/2024 at 12 pm

  • Total Marks: 100

Problem 1: Converting LP to Dual Form [30 marks]

  • Objective Function:

    • Minimize: 3x1 − x2 + x3

  • Subject to Constraints:

    1. x1 − 2x2 − x3 ≤ 4

    2. 2x1 − x2 + x3 = 8

    3. x1 − x2 ≤ 6

  • Variable Constraints:

    • x1 ≥ 0;

    • x2, x3 are free.

Problem 2: Optimality Check using Complementary Slackness [40 marks]

  • Candidate Solution:(x1, x2, x3, x4) = (0, 14, 0, 5)

  • Objective Function:

    • Maximize: 4x1 + x2 + 5x3 + 3x4

  • Subject to Constraints:

    1. x1 − x2 − x3 + 3x4 ≤ 1

    2. 5x1 + x2 + 3x3 + 8x4 ≤ 5

    3. −x1 + 2x2 + 3x3 − 5x4 ≤ 3

  • Variable Constraints:

    • x1, x2, x3, x4 ≥ 0

Problem 3: Solving LP with Dual Simplex Method [30 marks]

  • Objective Function:

    • Minimize: 3x1 + 2x2 + 10

  • Subject to Constraints:

    1. 3x1 + x2 ≥ 3

    2. 4x1 + 3x2 ≥ 6

  • Variable Constraints:

    • x1 ≥ 1;

    • x2 is free.