knowt logo

Tissues, Injury, Repair

Page 3:

  • Tissues are groups of similarly specialized cells that work together to perform a similar function.

  • Histology is the study of tissues.

  • There are 4 basic types of tissues: connective, muscular, epithelial, and nervous.

Page 4:

  • The tissues of the body develop from three primary germ layers: endoderm, mesoderm, and ectoderm.

  • Nervous tissue arises from ectoderm.

  • Muscle and connective tissues arise from mesoderm.

  • Epithelial tissues arise from all three germ layers.

Page 6:

  • Connective tissue protects, supports, and binds organs; stores energy as fat, and provides immunity.

  • Muscular tissue produces movement via contraction and generates body heat.

  • Epithelial tissue covers body surfaces, lines hollow organs and body cavities, and forms glands.

  • Nervous tissue detects changes in the body and responds by generating nerve impulses.

Page 7:

  • In some tissue types, adjacent cells are connected using a variety of intercellular junctions.

  • Occluding junctions include tight junctions.

  • Anchoring junctions include adherens junctions/belts, desmosomes, and hemi-desmosomes.

  • Communication junctions include gap junctions.

Page 9:

  • Tight junctions are found in epithelial tissue.

  • Tight junctions seal plasma membranes together and prevent materials from moving between cells and leaking out of organs.

Page 10:

  • Desmosomes are spot welds that connect the cytoskeletons of adjacent cells together.

  • Hemidesmosomes are spot welds that connect the cytoskeletons of a cell to the extracellular matrix.

  • Both types of junctions are widely distributed in tissues, especially those subjected to severe mechanical stress.

Page 13:

  • Gap junctions are found in all tissues where cells are in direct contact with one another.

  • Gap junctions allow various molecules, ions, and electrical impulses to directly pass through a regulated gate between cells.

  • Gap junctions allow rapid communication between cells.

Page 14:

  • Connective tissues are the most abundant and widely distributed tissues in the body.

  • Connective tissues perform numerous functions, including binding tissues together, supporting and strengthening tissue, protecting and insulating internal organs, compartmentalizing and transporting, and serving as energy reserves and immune responses.

  • Connective tissues are usually highly vascular and supplied with many nerves.

Page 15:

  • Connective tissues contain sparse cells separated by a non-living extracellular matrix.

  • The extracellular matrix is composed of a ground substance and fibers.

  • The ground substance is mostly water along with adhesion proteins and polysaccharide molecules.

  • The protein fibers include collagen (white, tensile strength), elastic (yellow, stretch), and reticular (form fine meshwork).

Page 16:

  • Connective tissue cell types include "blasts" (mitotically active secretory cells that lay down tissue) and "cytes" (mature cells).

  • Fibroblasts are the most numerous cell of connective tissues and secrete protein fibers.

  • Other cell types include chondroblasts and chondrocytes in cartilage, osteoblasts and osteocytes in bone, hematopoietic stem cells in bone marrow, and adipocytes, white blood cells, mast cells, and macrophages.

Page 18:

  • Connective tissue types include loose connective tissue (areolar, adipose, reticular), dense connective tissue (regular, irregular, elastic), cartilage (hyaline, fibrocartilage, elastic), bone (compact, spongy), and liquid connective tissue (blood, lymph).

Page 20:

  • Areolar tissue is the most widely distributed in the body and is a soft pliable tissue that wraps and cushions organs and soaks up excess fluid.

  • Adipose tissue is basically areolar tissue with lots of adipocytes and functions to insulate, support, protect, and act as an energy reserve.

Page 21:

  • Reticular connective tissue is a delicate network of interlacing reticular fibers and cells and forms a scaffolding used by cells of lymphoid tissues such as the lymph nodes, spleen, and bone marrow.

Page 22:

  • Areolar connective tissue is a soft packaging tissue of the body

  • It contains mucosa epithelium, lamina propria, fibers of matrix, and nuclei of fibroblasts

Page 23:

  • Adipose tissue is found in the subcutaneous layer beneath the skin

  • It contains vacuoles containing fat droplets and nuclei of fat cells

Page 24:

  • Reticular connective tissue forms a dark-staining network

  • It contains reticular cells, reticular fibers, and blood cells

Page 25:

  • Dense connective tissues contain very few cells and numerous thick, dense fibers

  • There are three types: dense regular connective tissue, dense irregular connective tissue, and elastic connective tissue

Page 26:

  • Dense regular connective tissue has collagen fibers arranged in parallel patterns and is found in tendons and ligaments

  • Dense irregular connective tissue has randomly arranged collagen fibers and is found in the dermis, ligaments, and tendons

  • Elastic connective tissue has freely branching elastic fibers and is found in arteries and lungs

Page 27:

  • Dense fibrous connective tissue is found in tendons

  • It contains collagen fibers and nuclei of fibroblasts

Page 28:

  • Dense irregular connective tissue is found in the reticular region of the dermis

  • It contains collagen fibers, fibroblasts, skin, and blood vessels

Page 29:

  • Elastic connective tissue is found in the aorta

  • It contains elastic fibers, the nucleus of fibroblasts, and the heart

Page 30:

  • Cartilage consists of a dense network of collagen and elastic fibers embedded in a gel-like ground substance

  • It contains few cells, such as chondrocytes, and has a poor blood supply

  • There are three types of cartilage tissue: hyaline cartilage, fibrocartilage, and elastic cartilage

Page 31:

  • Hyaline cartilage is the most abundant type and provides a smooth surface for joint movement

  • Fibrocartilage is a very strong, tough cartilage that absorbs shock

  • Elastic cartilage provides strength and elasticity

Page 32:

  • Hyaline cartilage is found in the trachea and has a matrix and chondrocytes in lacunae

Page 33:

  • Fibrocartilage is found in intervertebral discs and has collagen fibers and chondrocytes in lacunae

Page 34:

  • Elastic cartilage is found in the auricle of the ear and has perichondrium, the nucleus of chondrocytes, and elastic fibers in the ground substance

Page 35:

  • Bone tissue is composed of bone cells (osteocytes) in lacunae and a calcified ground substance

  • It is well vascularized and functions to support and protect body structures

  • There are two types of bone tissue: spongy bone and compact bone

Page 36:

  • Spongy bone consists of bone arranged in an irregular network of trabeculae and is found in the ends of long bones

  • Compact bone consists of a solid matrix of calcium and phosphate salts arranged in osteons and makes up the external layer of all bones

Page 37:

  • Bone tissue has lamellae, lacunae, and a central canal

Page 38:

  • Blood is composed of blood cells in a liquid matrix (plasma) and is found within the heart and blood vessels

  • Lymph is similar to blood plasma and contains lymph cells (lymphocytes) and is found in lymph vessels

Page 39:

  • Blood contains neutrophils, red blood cells, and monocytes

  • It functions to transport materials around the body and help fight disease

Page 40:

  • Loose connective tissue includes areolar, reticular, and adipose tissues

  • Dense connective tissue includes dense regular, dense irregular, and elastic tissues

  • Cartilage includes hyaline, fibrocartilage, and elastic cartilage

Page 41:

  • Bone tissue includes compact bone and spongy bone

  • Blood includes erythrocytes, leukocytes, and plasma

  • Both bone and blood tissues have specific functions and compositions

Page 42:

  • Epithelial tissues

    • Locations: body coverings, body linings, glandular tissue

    • Functions: protection, absorption, filtration, secretion

    • Structure:

      • Cells fit closely together and often form sheets; cells are held together by intercellular junctions

      • Have a free apical surface and a basal surface attached to a basement membrane and supported by a connective tissue reticular lamina

      • Good nerve supply

      • Avascular; blood vessels in the underlying connective tissue bring in nutrients and eliminate wastes

    • Can regenerate and heal easily if well nourished

Page 44:

  • Classification of Epithelial Tissues

    • Classified according to cell shape and the arrangement of layers

    • Cell shapes:

      • Squamous – flattened, tile-like

      • Cuboidal - cube-shaped

      • Columnar - column-like

    • Arrangement of layers:

      • Simple - one layer

      • Stratified - more than one layer

Page 46:

  • Simple Epithelia

    • Composed of a single thin layer of cells

    • Concerned primarily with movement/transport of substances from one body compartment to another by diffusion

    • Include:

      • Simple squamous epithelium

      • Simple cuboidal epithelium

      • Simple columnar epithelium

      • Pseudostratified columnar epithelium

Page 47:

  • Simple Squamous Epithelia

    • Composed of a single layer of flat cells

    • Locations:

      • Usually form membranes

      • Lines body cavities (forms part of serous membranes)

      • Lines heart, blood vessels, and lymphatic vessels (endothelium)

      • Lines alveoli in the lungs and the glomerular capsule of kidneys

    • Functions: very thin, so allows rapid diffusion, osmosis and filtration

Page 49:

  • Simple Cuboidal Epithelia

    • Composed of a single layer of cube-shaped cells

    • Locations:

      • Cubes make tubes

      • Common in glands and their ducts

      • Forms walls of kidney tubules

      • Covers the ovaries

    • Functions: secretion and absorption, ciliated types propel mucus or reproductive cells

Page 51:

  • Simple Columnar Epithelia

    • A single layer of column-like cells

    • Often interspersed with goblet cells (single-celled glands that produce mucus)

    • May have cilia or microvilli

    • Location: lines the digestive tract

    • Functions: secretion and absorption, with cilia - move mucus and other substances across the cell surface, with microvilli - involved in absorption (e.g. small intestine)

Page 53:

  • Pseudostratified Columnar Epithelia

    • Appears to have several layers but all cells are attached to the basement membrane

    • May contain cilia and goblet cells

    • Location: ciliated - upper respiratory tract, non-ciliated – sperm carrying ducts, ducts of large glands

    • Function: function in absorption or secretion (particularly of mucus), mucus traps inhaled particles & cilia move mucus up to the mouth where it can be swallowed or spat out

Page 55:

  • Stratified Epithelia

    • Contain 2 or more layers of cells

    • Are thicker and stronger than simple epithelia and typically act as a protective covering

    • Are named according to the shape of cells in the apical layer

    • Include:

      • Stratified squamous epithelium (widespread)

      • Stratified cuboidal epithelia (rare)

      • Stratified columnar epithelia (rare)

      • Stratified transitional epithelium (bladder)

Page 58:

  • Transitional Epithelium

    • Cells change shape depending on the state of stretch in the tissue

    • Location: found in the urinary system

    • Function: allow hollow structures (e.g. urinary bladder) to expand without causing damage to tissues

Page 62:

  • A gland is one or more cells that makes and secretes a product that contains protein molecules in an aqueous fluid.

  • Glands can be classified as endocrine or exocrine, and as unicellular or multicellular.

  • Endocrine glands are ductless and secrete hormones into the blood vessels.

  • Exocrine glands secrete their products through ducts to the epithelial surface or into the lumen of a hollow organ.

Page 63:

  • Endocrine glands secrete hormones into the blood.

  • Exocrine glands secrete their products through ducts to the epithelial surface.

  • Simple epithelia are a single thin layer of cells and are primarily concerned with the movement/transport of substances.

  • Different types of simple epithelia include simple squamous, simple cuboidal, and simple columnar.

Page 64:

  • Pseudostratified columnar epithelium appears to have several layers but all cells are attached to the basement membrane.

  • Stratified epithelia contain 2 or more layers of cells and act as a protective covering.

  • Different types of stratified epithelia include stratified squamous, stratified cuboidal, and stratified transitional.

Page 65:

  • Types of epithelial tissues include basement membrane, connective tissue, pseudostratified columnar, glandular, simple squamous, simple cuboidal, transitional, simple columnar, stratified columnar, and stratified squamous.

Page 66:

  • Muscular tissue consists of contractile cells called myocytes or muscle fibers.

  • There are 3 types of muscle tissue: skeletal muscle, cardiac muscle, and smooth muscle.

Page 67:

  • Skeletal muscle tissue contracts to pull on bones or skin and produces gross body movements or facial expressions.

  • Characteristics of skeletal muscle cells include long, cylindrical cells called muscle fibers, striations, multinucleate, and voluntary control.

Page 68:

  • Skeletal muscle tissue is represented by a diagram and photomicrograph.

Page 69:

  • Cardiac muscle tissue is found only in the myocardium of the heart and functions to pump blood.

  • Characteristics of cardiac muscle cells include being branched, attached to other cardiac muscle cells at intercalated disks, striations, uninucleate, and involuntary control.

Page 70:

  • Cardiac muscle tissue is represented by a diagram and photomicrograph.

Page 71:

  • Smooth muscle tissue is found in the walls of hollow organs such as the stomach, intestines, uterus, and blood vessels.

  • Characteristics of smooth muscle cells include spindle-shaped cells, no visible striations, uninucleate, and involuntary control.

  • Smooth muscle tissue is usually found in two layers: circular and longitudinal.

Page 72:

  • Smooth muscle tissue is represented by a diagram and photomicrograph.

Page 73:

  • Skeletal muscle is voluntary and contracts to pull on bones or skin.

  • Cardiac muscle is involuntary and found in the myocardium of the heart.

  • Smooth muscle is involuntary and found in the walls of hollow organs.

  • Summary: Muscular Tissue

Page 74:

  • Types of muscular tissue include cardiac muscle cells, skeletal muscle cells, and smooth muscle cells.

Page 75:

  • Nervous tissue is composed of neurons and nerve support cells called neuroglia.

  • The function of nervous tissue is to send impulses to other areas of the body.

  • Neurons conduct nerve impulses, analyze information, store memories, and direct the body's responses.

  • Neuroglia insulate, protect, and support neurons.

Page 76:

  • Nervous tissue is represented by a diagram and photomicrograph.

Page 77:

  • Summary: Tissue Types

  • Connective tissue has 5 types and includes loose CT, dense/fibrous CT, cartilage, bone, and liquid CT.

  • Muscular tissue has 3 types: skeletal, cardiac, and smooth muscle.

  • Epithelial tissue has many types and forms body coverings, linings, and glandular tissue.

  • Nervous tissue is composed of neurons and supporting cells.

Page 78:

  • Summary: Tissue Functions

  • Connective tissue protects, supports, binds organs, stores energy, and provides immunity.

  • Muscular tissue produces movement via contraction and generates body heat.

  • Epithelial tissue forms boundaries between different environments, protects, secretes, absorbs, filters.

  • Nervous tissue detects changes in the body and responds by generating nerve impulses.

Page 79:

  • Nervous tissue is responsible for internal communication in the brain, spinal cord, and nerves.

  • Muscular tissue contracts to cause movement in muscles attached to bones, muscles of the heart, and muscles of the walls of hollow organs.

  • Epithelial tissue forms boundaries between different environments, protects, secretes, absorbs, and filters in the skin surface, lining of GI tract organs, and other hollow organs.

  • Connective tissue supports, protects, and binds other tissues together in bones, tendons, fat, and other soft padding tissue.

Page 80:

  • There are 2 types of tissue repair: regeneration and fibrosis.

  • Regeneration is the replacement of destroyed tissue by the same kind of cells without scarring.

  • Fibrosis is the replacement of destroyed tissue by dense (fibrous) connective tissue, forming scar tissue.

  • Whether regeneration or fibrosis occurs depends on the type of tissue damaged and the severity of the injury.

Page 81: Tissue Repair: Regeneration

  • Tissues that regenerate easily:

    • Epithelial tissue (skin and mucous membranes)

    • Loose connective tissues, bone and blood

  • In these tissues, parenchymal cells divide to replace damaged tissue with new tissue of the same type

  • Tissues that regenerate poorly and have limited capacity for tissue repair:

    • Nervous, muscle, dense connective tissue, and cartilage

  • In these tissues, damaged tissue is replaced largely with scar tissue reducing functionality

Page 82: Tissue Repair: Fibrosis

  • Carried out by fibroblasts

  • Fibroblasts are the most common cells in the body that maintain connective tissue and repair tissue damage

  • When an injury (or infection) occurs, fibroblasts:

    1. Stop making collagen, change shape and travel to the area of injury

    2. Release inflammatory products, destroying damaged tissue for phagocytosis

    3. Then start making collagen and repair the area of damage with scar tissue

    4. When finished, they migrate back to where they came from and return to their normal shape and function

Page 83: Connective Tissue Repair

  • Fibroblasts are the most common cells in connective tissue

  • Some fibroblasts are able to transform into any of the other types of connective tissue cells (regeneration)

  • Some fibroblasts make scar tissue (fibrosis)

  • Mesenchymal cells (in bone marrow and the periosteum) are multipotent adult stem cells that can differentiate into any type of connective tissue cells needed for regeneration to repair damaged tissue

Page 84: Connective Tissue Repair

  • Repair of dense connective and cartilage tissues in adults is limited by:

    • Intrinsic hypocellularity (lack of cells)

    • Dense extracellular matrix that limits cellular migration and local proliferation at an injury site

  • Haematopoietic stem cells found in bone marrow make blood cells

Page 85: Muscle Tissue Repair

  • Skeletal muscle:

    • Cells/fibers cannot divide but can lay down new protein and enlarge (hypertrophy)

    • Contains stem cells called satellite cells found underneath the basal lamina

    • Capable of repairing limited damage

  • Cardiac muscle lacks stem cells for tissue regeneration

Page 86: Muscle Tissue Repair

  • Muscle tissue has a relatively poor capacity for the repair of dead or damaged cells

  • Smooth muscle regenerates from stem cells called pericytes found in some blood vessels

    • Capable of slow and limited repair

    • Regenerates and repairs much more readily than skeletal and cardiac muscle tissue

  • Myofibrosis is the replacement of muscle tissue by connective tissues (scar tissue)

Page 87: Epithelial Tissue Repair

  • Epithelial covering and linings are often under constant heavy wear and tear and therefore must be highly regenerative

  • This occurs either by division and differentiation of stem cells (e.g., in the epidermis) or division of parenchymal cells (e.g., endothelial cells)

  • Glandular tissue:

    • Many exocrine glands have a continuous loss of cells which have to be constantly replaced by new ones (regeneration) e.g., the liver, sebaceous glands

    • Stem cells have been identified in some endocrine glands e.g., pituitary, adrenal, pancreas

Page 88: Nervous Tissue Repair

  • Nerve cells are amitotic, therefore do not divide and cannot replace damaged cells

  • The PNS has the capacity for repair and regeneration

    • Axons are able to regrow as long as the cell body is intact and they have contact with the Schwann cells

  • The CNS is largely incapable of self-repair and regeneration

    • Damaged CNS tissue undergoes gliosis, the formation of scar tissue composed of glial cells

    • Certain areas of the adult brain possess neural stem cells, but their capability of repairing damage to neurons or neuroglia is still uncertain

Page 89: Tissue Damage & Injury

  • Causes of tissue damage and injury include trauma, disease (homeostatic imbalance), or simple wear and tear

  • Physical trauma is an injury to living tissue caused by an extrinsic agent

  • Two main types of physical trauma are:

    1. Blunt force trauma—when an object or force strikes the body, often causing hematoma and/or broken bones

    2. Penetrating trauma—when an object pierces the skin or body, usually creating an open wound e.g., a needle or knife

  • Strains and sprains are caused by wear and tear

Page 90: Haemostasis

  • Blood vessels are often damaged as a result of wear and tear and physical trauma

  • Haemostasis is the stoppage of bleeding resulting from a break in a blood vessel in order to maintain blood volume

  • Haemostasis involves three phases:

    1. Vascular spasms

    2. Platelet plug formation

    3. Coagulation (blood clotting)

Page 91: Haemostasis

  1. Vascular spasms:

  • Vasoconstriction causes blood vessels to spasm and decreases blood loss

  1. Platelet plug formation:

  • Collagen fibers are exposed by a break in a blood vessel

  • Platelets become "sticky" and cling to fibers

  • Anchored platelets release chemicals to attract more platelets (positive feedback)

  • Platelets pile up to form a platelet plug

Page 93: Haemostasis

  1. Coagulation:

  • The blood is transformed from a liquid to a gel

  • Injured tissues release chemicals and calcium ions that trigger a clotting cascade

  • Prothrombin activator converts prothrombin to thrombin (an enzyme)

  • Thrombin joins fibrinogen proteins into insoluble fibrin

  • Fibrin forms a meshwork (the basis for a blood clot) which traps RBCs

  • Blood usually clots within 3 to 6 minutes

  • The clot remains as the endothelium regenerates

  • The clot is broken down after tissue repair by fibrinolysis

Page 96: Haematoma

  • A collection of coagulated blood outside a blood vessel but within the body

  • A haemorrhage is active, ongoing bleeding

  • Can be seen under the skin or nails as bruises (aka contusions)

  • Can also happen deep inside the body where they may not be visible

  • During the healing process, oxygen-rich blood loses oxygen (red → purple/blue), then the RBCs degrade and haemoglobin breaks down biliverdin (green) → bilirubin (yellow) → haemosiderin (brown)

  • Phagocytosis clears the breakdown products from the area

Page 97: Open Wound Healing

  • There are two kinds of wound healing:

    • Epidermal wound healing occurs following superficial wounds that affect only the epidermis

      • Usually return to normal function

    • Deep wound healing occurs when an injury extends to the dermis and subcutaneous layer

      • Usually loss of some function and development of scar tissue

Page 98: Events in Wound Healing

  • Inflammation and Haemostasis

    • Injured blood vessels bleed

    • Inflammatory chemicals are released

    • Haemostasis occurs in injured blood vessels

    • Uninjured capillaries become very permeable

    • Clotting proteins migrate into the area

    • A clot walls off the injured area

  • Organisation and blood supply restored

    • Growth of new capillaries

    • The blood clot is replaced with granulation tissue

    • Epithelium begins to regenerate

    • Fibroblasts produce collagen fibres to bridge the gap

    • Debris is phagocytized

Page 99: Marieb 2017 Figure 4.12, step 1

  • Inflammation sets the stage:

    • Severed blood vessels bleed and inflammatory chemicals are released

    • Local blood vessels become more permeable, allowing white blood cells, fluid, clotting proteins, and other plasma proteins to seep into the injured area

    • Clotting occurs; surface dries and forms a scab

Page 100: Regenerating epithelium

  • Organization restores the blood supply:

    • The clot is replaced by granulation tissue, which restores the vascular supply

    • Fibroblasts produce collagen fibers that bridge the gap

    • Macrophages phagocytize cell debris

    • Surface epithelial cells multiply and migrate over the granulation tissue

Page 101: Events in Wound Healing

  • Regeneration and fibrosis

    • Regeneration of surface epithelium

    • Scab detaches

    • Fibrous tissue matures; epithelium thickens and begins to resemble adjacent tissue

    • Results in a fully regenerated epithelium with underlying scar tissue

Page 102: Regenerated epithelium

  • Regeneration and fibrosis effect permanent repair:

    • The fibrosed area matures and contracts; the epithelium thickens

    • A fully regenerated epithelium with an underlying area of scar tissue results

Page 103: Scab Blood clot in Regenerating epithelium incised wound

  • Inflammation sets the stage:

    • Severed blood vessels bleed and inflammatory chemicals are released

    • Local blood vessels become more permeable, allowing white blood cells, fluid, clotting proteins, and other plasma proteins to seep into the injured area

    • Clotting occurs; surface dries and forms a scab

  • Organization restores the blood supply:

    • The clot is replaced by granulation tissue, which restores the vascular supply

    • Fibroblasts produce collagen fibers that bridge the gap

    • Macrophages phagocytize cell debris

    • Surface epithelial cells multiply and migrate over the granulation tissue

  • Regeneration and fibrosis effect permanent repair:

    • The fibrosed area matures and contracts; the epithelium thickens

    • A fully regenerated epithelium with an underlying area of scar tissue results

Page 104: Bone Fractures

  • Fracture—break in a bone

  • Types of bone fractures

    • Closed (simple) fracture—break that does not penetrate the skin

    • Open (compound) fracture—broken bone penetrates through the skin

  • Bone fractures are treated by reduction and immobilization

Page 105: TABLE 5.2 Common Types of Fractures

  • Fracture type

    • Comminuted

      • Bone breaks into many fragments

      • Particularly common in older people, whose bones are more brittle

    • Compression

      • Bone is crushed

      • Common in porous bones (i.e., osteoporotic bones of older people)

    • Depressed

      • Broken bone portion is pressed inward

      • Typical of skull fracture

    • Impacted

      • Broken bone ends are forced into each other

      • Commonly occurs when one attempts to break a fall with outstretched arms

    • Spiral

      • Ragged break occurs when excessive twisting forces are applied to a bone

      • Common sports fracture

    • Greenstick

      • Bone breaks incompletely, much in the way a green twig breaks

      • Common in children, whose bones are more flexible than those of adults

Page 106: Repair of Bone Fractures

  • Haematoma (blood-filled swelling) is formed

  • The break is splinted by fibrocartilage to form a callus

    • Phagocytes remove cellular debris and fibroblasts deposit collagen to form the callus

  • Fibrocartilage callus is replaced by a bony callus of spongy bone

  • Bony callus is remodeled to form a permanent patch

    • The spongy bone is replaced by compact bone

Page 107: Hematoma External Bony callus callus of spongy bone New Internal blood callus vessels Healed (fibrous fracture tissue and Spongy cartilage) bone trabecula

  • Hematoma

  • Fibrocartilage callus forms

  • Bony callus forms

  • Bone remodeling occurs

Page 108: Burns

  • Tissue damage caused by excessive heat, electricity, radioactivity, or corrosive chemicals that denature the proteins in the skin cells

  • Immediate threat = Dehydration and electrolyte imbalance, leading to renal shutdown and circulatory shock

  • Burns are graded according to their severity

    • A first-degree burn involves only the epidermis

    • A second-degree burn destroys the epidermis and part of the dermis

    • A third-degree burn is a full-thickness burn (epidermis, dermis, and subcutaneous layer)

Page 110: Burns

  • Critical if:

    • 25% of the body has second-degree burns

    • 10% of the body has third-degree burns

    • Third-degree burns on the face, hands, feet, or perineum

    • When the burn area >70%, more than half the victims die

  • The rule of nines is used to quickly estimate the surface area affected by a burn

Page 112: Strain

  • Stretching or tearing of skeletal or cardiac muscle fibers

  • Classified depending on the severity of muscle fiber damage:

    • Grade I – mild: only a few muscle fibers are stretched or torn. Muscle is intact and has normal strength

    • Grade II – moderate: with a greater number of injured fibers. There is inflammation, loss of strength, and may be bruising (due to blood vessel damage)

    • Grade III - tears the muscle all the way through. Complete loss of muscle function. There is inflammation and bruising. May require surgery.

Page 113: Sprain

  • The stretch or tear of ligaments

  • Grade 1 - the ligament is stretched but not torn

  • Grade 2 - the ligament is partially torn. Can be inflammation and bruising

  • Grade 3 – the ligament is completely torn or ruptured. There is inflammation and bruising

  • In severe cases, joints can become unstable

  • Bones can move out of alignment

  • Joint may extend beyond its normal range of motion

  • Severe sprains sometimes require surgery to repair torn ligaments

XS

Tissues, Injury, Repair

Page 3:

  • Tissues are groups of similarly specialized cells that work together to perform a similar function.

  • Histology is the study of tissues.

  • There are 4 basic types of tissues: connective, muscular, epithelial, and nervous.

Page 4:

  • The tissues of the body develop from three primary germ layers: endoderm, mesoderm, and ectoderm.

  • Nervous tissue arises from ectoderm.

  • Muscle and connective tissues arise from mesoderm.

  • Epithelial tissues arise from all three germ layers.

Page 6:

  • Connective tissue protects, supports, and binds organs; stores energy as fat, and provides immunity.

  • Muscular tissue produces movement via contraction and generates body heat.

  • Epithelial tissue covers body surfaces, lines hollow organs and body cavities, and forms glands.

  • Nervous tissue detects changes in the body and responds by generating nerve impulses.

Page 7:

  • In some tissue types, adjacent cells are connected using a variety of intercellular junctions.

  • Occluding junctions include tight junctions.

  • Anchoring junctions include adherens junctions/belts, desmosomes, and hemi-desmosomes.

  • Communication junctions include gap junctions.

Page 9:

  • Tight junctions are found in epithelial tissue.

  • Tight junctions seal plasma membranes together and prevent materials from moving between cells and leaking out of organs.

Page 10:

  • Desmosomes are spot welds that connect the cytoskeletons of adjacent cells together.

  • Hemidesmosomes are spot welds that connect the cytoskeletons of a cell to the extracellular matrix.

  • Both types of junctions are widely distributed in tissues, especially those subjected to severe mechanical stress.

Page 13:

  • Gap junctions are found in all tissues where cells are in direct contact with one another.

  • Gap junctions allow various molecules, ions, and electrical impulses to directly pass through a regulated gate between cells.

  • Gap junctions allow rapid communication between cells.

Page 14:

  • Connective tissues are the most abundant and widely distributed tissues in the body.

  • Connective tissues perform numerous functions, including binding tissues together, supporting and strengthening tissue, protecting and insulating internal organs, compartmentalizing and transporting, and serving as energy reserves and immune responses.

  • Connective tissues are usually highly vascular and supplied with many nerves.

Page 15:

  • Connective tissues contain sparse cells separated by a non-living extracellular matrix.

  • The extracellular matrix is composed of a ground substance and fibers.

  • The ground substance is mostly water along with adhesion proteins and polysaccharide molecules.

  • The protein fibers include collagen (white, tensile strength), elastic (yellow, stretch), and reticular (form fine meshwork).

Page 16:

  • Connective tissue cell types include "blasts" (mitotically active secretory cells that lay down tissue) and "cytes" (mature cells).

  • Fibroblasts are the most numerous cell of connective tissues and secrete protein fibers.

  • Other cell types include chondroblasts and chondrocytes in cartilage, osteoblasts and osteocytes in bone, hematopoietic stem cells in bone marrow, and adipocytes, white blood cells, mast cells, and macrophages.

Page 18:

  • Connective tissue types include loose connective tissue (areolar, adipose, reticular), dense connective tissue (regular, irregular, elastic), cartilage (hyaline, fibrocartilage, elastic), bone (compact, spongy), and liquid connective tissue (blood, lymph).

Page 20:

  • Areolar tissue is the most widely distributed in the body and is a soft pliable tissue that wraps and cushions organs and soaks up excess fluid.

  • Adipose tissue is basically areolar tissue with lots of adipocytes and functions to insulate, support, protect, and act as an energy reserve.

Page 21:

  • Reticular connective tissue is a delicate network of interlacing reticular fibers and cells and forms a scaffolding used by cells of lymphoid tissues such as the lymph nodes, spleen, and bone marrow.

Page 22:

  • Areolar connective tissue is a soft packaging tissue of the body

  • It contains mucosa epithelium, lamina propria, fibers of matrix, and nuclei of fibroblasts

Page 23:

  • Adipose tissue is found in the subcutaneous layer beneath the skin

  • It contains vacuoles containing fat droplets and nuclei of fat cells

Page 24:

  • Reticular connective tissue forms a dark-staining network

  • It contains reticular cells, reticular fibers, and blood cells

Page 25:

  • Dense connective tissues contain very few cells and numerous thick, dense fibers

  • There are three types: dense regular connective tissue, dense irregular connective tissue, and elastic connective tissue

Page 26:

  • Dense regular connective tissue has collagen fibers arranged in parallel patterns and is found in tendons and ligaments

  • Dense irregular connective tissue has randomly arranged collagen fibers and is found in the dermis, ligaments, and tendons

  • Elastic connective tissue has freely branching elastic fibers and is found in arteries and lungs

Page 27:

  • Dense fibrous connective tissue is found in tendons

  • It contains collagen fibers and nuclei of fibroblasts

Page 28:

  • Dense irregular connective tissue is found in the reticular region of the dermis

  • It contains collagen fibers, fibroblasts, skin, and blood vessels

Page 29:

  • Elastic connective tissue is found in the aorta

  • It contains elastic fibers, the nucleus of fibroblasts, and the heart

Page 30:

  • Cartilage consists of a dense network of collagen and elastic fibers embedded in a gel-like ground substance

  • It contains few cells, such as chondrocytes, and has a poor blood supply

  • There are three types of cartilage tissue: hyaline cartilage, fibrocartilage, and elastic cartilage

Page 31:

  • Hyaline cartilage is the most abundant type and provides a smooth surface for joint movement

  • Fibrocartilage is a very strong, tough cartilage that absorbs shock

  • Elastic cartilage provides strength and elasticity

Page 32:

  • Hyaline cartilage is found in the trachea and has a matrix and chondrocytes in lacunae

Page 33:

  • Fibrocartilage is found in intervertebral discs and has collagen fibers and chondrocytes in lacunae

Page 34:

  • Elastic cartilage is found in the auricle of the ear and has perichondrium, the nucleus of chondrocytes, and elastic fibers in the ground substance

Page 35:

  • Bone tissue is composed of bone cells (osteocytes) in lacunae and a calcified ground substance

  • It is well vascularized and functions to support and protect body structures

  • There are two types of bone tissue: spongy bone and compact bone

Page 36:

  • Spongy bone consists of bone arranged in an irregular network of trabeculae and is found in the ends of long bones

  • Compact bone consists of a solid matrix of calcium and phosphate salts arranged in osteons and makes up the external layer of all bones

Page 37:

  • Bone tissue has lamellae, lacunae, and a central canal

Page 38:

  • Blood is composed of blood cells in a liquid matrix (plasma) and is found within the heart and blood vessels

  • Lymph is similar to blood plasma and contains lymph cells (lymphocytes) and is found in lymph vessels

Page 39:

  • Blood contains neutrophils, red blood cells, and monocytes

  • It functions to transport materials around the body and help fight disease

Page 40:

  • Loose connective tissue includes areolar, reticular, and adipose tissues

  • Dense connective tissue includes dense regular, dense irregular, and elastic tissues

  • Cartilage includes hyaline, fibrocartilage, and elastic cartilage

Page 41:

  • Bone tissue includes compact bone and spongy bone

  • Blood includes erythrocytes, leukocytes, and plasma

  • Both bone and blood tissues have specific functions and compositions

Page 42:

  • Epithelial tissues

    • Locations: body coverings, body linings, glandular tissue

    • Functions: protection, absorption, filtration, secretion

    • Structure:

      • Cells fit closely together and often form sheets; cells are held together by intercellular junctions

      • Have a free apical surface and a basal surface attached to a basement membrane and supported by a connective tissue reticular lamina

      • Good nerve supply

      • Avascular; blood vessels in the underlying connective tissue bring in nutrients and eliminate wastes

    • Can regenerate and heal easily if well nourished

Page 44:

  • Classification of Epithelial Tissues

    • Classified according to cell shape and the arrangement of layers

    • Cell shapes:

      • Squamous – flattened, tile-like

      • Cuboidal - cube-shaped

      • Columnar - column-like

    • Arrangement of layers:

      • Simple - one layer

      • Stratified - more than one layer

Page 46:

  • Simple Epithelia

    • Composed of a single thin layer of cells

    • Concerned primarily with movement/transport of substances from one body compartment to another by diffusion

    • Include:

      • Simple squamous epithelium

      • Simple cuboidal epithelium

      • Simple columnar epithelium

      • Pseudostratified columnar epithelium

Page 47:

  • Simple Squamous Epithelia

    • Composed of a single layer of flat cells

    • Locations:

      • Usually form membranes

      • Lines body cavities (forms part of serous membranes)

      • Lines heart, blood vessels, and lymphatic vessels (endothelium)

      • Lines alveoli in the lungs and the glomerular capsule of kidneys

    • Functions: very thin, so allows rapid diffusion, osmosis and filtration

Page 49:

  • Simple Cuboidal Epithelia

    • Composed of a single layer of cube-shaped cells

    • Locations:

      • Cubes make tubes

      • Common in glands and their ducts

      • Forms walls of kidney tubules

      • Covers the ovaries

    • Functions: secretion and absorption, ciliated types propel mucus or reproductive cells

Page 51:

  • Simple Columnar Epithelia

    • A single layer of column-like cells

    • Often interspersed with goblet cells (single-celled glands that produce mucus)

    • May have cilia or microvilli

    • Location: lines the digestive tract

    • Functions: secretion and absorption, with cilia - move mucus and other substances across the cell surface, with microvilli - involved in absorption (e.g. small intestine)

Page 53:

  • Pseudostratified Columnar Epithelia

    • Appears to have several layers but all cells are attached to the basement membrane

    • May contain cilia and goblet cells

    • Location: ciliated - upper respiratory tract, non-ciliated – sperm carrying ducts, ducts of large glands

    • Function: function in absorption or secretion (particularly of mucus), mucus traps inhaled particles & cilia move mucus up to the mouth where it can be swallowed or spat out

Page 55:

  • Stratified Epithelia

    • Contain 2 or more layers of cells

    • Are thicker and stronger than simple epithelia and typically act as a protective covering

    • Are named according to the shape of cells in the apical layer

    • Include:

      • Stratified squamous epithelium (widespread)

      • Stratified cuboidal epithelia (rare)

      • Stratified columnar epithelia (rare)

      • Stratified transitional epithelium (bladder)

Page 58:

  • Transitional Epithelium

    • Cells change shape depending on the state of stretch in the tissue

    • Location: found in the urinary system

    • Function: allow hollow structures (e.g. urinary bladder) to expand without causing damage to tissues

Page 62:

  • A gland is one or more cells that makes and secretes a product that contains protein molecules in an aqueous fluid.

  • Glands can be classified as endocrine or exocrine, and as unicellular or multicellular.

  • Endocrine glands are ductless and secrete hormones into the blood vessels.

  • Exocrine glands secrete their products through ducts to the epithelial surface or into the lumen of a hollow organ.

Page 63:

  • Endocrine glands secrete hormones into the blood.

  • Exocrine glands secrete their products through ducts to the epithelial surface.

  • Simple epithelia are a single thin layer of cells and are primarily concerned with the movement/transport of substances.

  • Different types of simple epithelia include simple squamous, simple cuboidal, and simple columnar.

Page 64:

  • Pseudostratified columnar epithelium appears to have several layers but all cells are attached to the basement membrane.

  • Stratified epithelia contain 2 or more layers of cells and act as a protective covering.

  • Different types of stratified epithelia include stratified squamous, stratified cuboidal, and stratified transitional.

Page 65:

  • Types of epithelial tissues include basement membrane, connective tissue, pseudostratified columnar, glandular, simple squamous, simple cuboidal, transitional, simple columnar, stratified columnar, and stratified squamous.

Page 66:

  • Muscular tissue consists of contractile cells called myocytes or muscle fibers.

  • There are 3 types of muscle tissue: skeletal muscle, cardiac muscle, and smooth muscle.

Page 67:

  • Skeletal muscle tissue contracts to pull on bones or skin and produces gross body movements or facial expressions.

  • Characteristics of skeletal muscle cells include long, cylindrical cells called muscle fibers, striations, multinucleate, and voluntary control.

Page 68:

  • Skeletal muscle tissue is represented by a diagram and photomicrograph.

Page 69:

  • Cardiac muscle tissue is found only in the myocardium of the heart and functions to pump blood.

  • Characteristics of cardiac muscle cells include being branched, attached to other cardiac muscle cells at intercalated disks, striations, uninucleate, and involuntary control.

Page 70:

  • Cardiac muscle tissue is represented by a diagram and photomicrograph.

Page 71:

  • Smooth muscle tissue is found in the walls of hollow organs such as the stomach, intestines, uterus, and blood vessels.

  • Characteristics of smooth muscle cells include spindle-shaped cells, no visible striations, uninucleate, and involuntary control.

  • Smooth muscle tissue is usually found in two layers: circular and longitudinal.

Page 72:

  • Smooth muscle tissue is represented by a diagram and photomicrograph.

Page 73:

  • Skeletal muscle is voluntary and contracts to pull on bones or skin.

  • Cardiac muscle is involuntary and found in the myocardium of the heart.

  • Smooth muscle is involuntary and found in the walls of hollow organs.

  • Summary: Muscular Tissue

Page 74:

  • Types of muscular tissue include cardiac muscle cells, skeletal muscle cells, and smooth muscle cells.

Page 75:

  • Nervous tissue is composed of neurons and nerve support cells called neuroglia.

  • The function of nervous tissue is to send impulses to other areas of the body.

  • Neurons conduct nerve impulses, analyze information, store memories, and direct the body's responses.

  • Neuroglia insulate, protect, and support neurons.

Page 76:

  • Nervous tissue is represented by a diagram and photomicrograph.

Page 77:

  • Summary: Tissue Types

  • Connective tissue has 5 types and includes loose CT, dense/fibrous CT, cartilage, bone, and liquid CT.

  • Muscular tissue has 3 types: skeletal, cardiac, and smooth muscle.

  • Epithelial tissue has many types and forms body coverings, linings, and glandular tissue.

  • Nervous tissue is composed of neurons and supporting cells.

Page 78:

  • Summary: Tissue Functions

  • Connective tissue protects, supports, binds organs, stores energy, and provides immunity.

  • Muscular tissue produces movement via contraction and generates body heat.

  • Epithelial tissue forms boundaries between different environments, protects, secretes, absorbs, filters.

  • Nervous tissue detects changes in the body and responds by generating nerve impulses.

Page 79:

  • Nervous tissue is responsible for internal communication in the brain, spinal cord, and nerves.

  • Muscular tissue contracts to cause movement in muscles attached to bones, muscles of the heart, and muscles of the walls of hollow organs.

  • Epithelial tissue forms boundaries between different environments, protects, secretes, absorbs, and filters in the skin surface, lining of GI tract organs, and other hollow organs.

  • Connective tissue supports, protects, and binds other tissues together in bones, tendons, fat, and other soft padding tissue.

Page 80:

  • There are 2 types of tissue repair: regeneration and fibrosis.

  • Regeneration is the replacement of destroyed tissue by the same kind of cells without scarring.

  • Fibrosis is the replacement of destroyed tissue by dense (fibrous) connective tissue, forming scar tissue.

  • Whether regeneration or fibrosis occurs depends on the type of tissue damaged and the severity of the injury.

Page 81: Tissue Repair: Regeneration

  • Tissues that regenerate easily:

    • Epithelial tissue (skin and mucous membranes)

    • Loose connective tissues, bone and blood

  • In these tissues, parenchymal cells divide to replace damaged tissue with new tissue of the same type

  • Tissues that regenerate poorly and have limited capacity for tissue repair:

    • Nervous, muscle, dense connective tissue, and cartilage

  • In these tissues, damaged tissue is replaced largely with scar tissue reducing functionality

Page 82: Tissue Repair: Fibrosis

  • Carried out by fibroblasts

  • Fibroblasts are the most common cells in the body that maintain connective tissue and repair tissue damage

  • When an injury (or infection) occurs, fibroblasts:

    1. Stop making collagen, change shape and travel to the area of injury

    2. Release inflammatory products, destroying damaged tissue for phagocytosis

    3. Then start making collagen and repair the area of damage with scar tissue

    4. When finished, they migrate back to where they came from and return to their normal shape and function

Page 83: Connective Tissue Repair

  • Fibroblasts are the most common cells in connective tissue

  • Some fibroblasts are able to transform into any of the other types of connective tissue cells (regeneration)

  • Some fibroblasts make scar tissue (fibrosis)

  • Mesenchymal cells (in bone marrow and the periosteum) are multipotent adult stem cells that can differentiate into any type of connective tissue cells needed for regeneration to repair damaged tissue

Page 84: Connective Tissue Repair

  • Repair of dense connective and cartilage tissues in adults is limited by:

    • Intrinsic hypocellularity (lack of cells)

    • Dense extracellular matrix that limits cellular migration and local proliferation at an injury site

  • Haematopoietic stem cells found in bone marrow make blood cells

Page 85: Muscle Tissue Repair

  • Skeletal muscle:

    • Cells/fibers cannot divide but can lay down new protein and enlarge (hypertrophy)

    • Contains stem cells called satellite cells found underneath the basal lamina

    • Capable of repairing limited damage

  • Cardiac muscle lacks stem cells for tissue regeneration

Page 86: Muscle Tissue Repair

  • Muscle tissue has a relatively poor capacity for the repair of dead or damaged cells

  • Smooth muscle regenerates from stem cells called pericytes found in some blood vessels

    • Capable of slow and limited repair

    • Regenerates and repairs much more readily than skeletal and cardiac muscle tissue

  • Myofibrosis is the replacement of muscle tissue by connective tissues (scar tissue)

Page 87: Epithelial Tissue Repair

  • Epithelial covering and linings are often under constant heavy wear and tear and therefore must be highly regenerative

  • This occurs either by division and differentiation of stem cells (e.g., in the epidermis) or division of parenchymal cells (e.g., endothelial cells)

  • Glandular tissue:

    • Many exocrine glands have a continuous loss of cells which have to be constantly replaced by new ones (regeneration) e.g., the liver, sebaceous glands

    • Stem cells have been identified in some endocrine glands e.g., pituitary, adrenal, pancreas

Page 88: Nervous Tissue Repair

  • Nerve cells are amitotic, therefore do not divide and cannot replace damaged cells

  • The PNS has the capacity for repair and regeneration

    • Axons are able to regrow as long as the cell body is intact and they have contact with the Schwann cells

  • The CNS is largely incapable of self-repair and regeneration

    • Damaged CNS tissue undergoes gliosis, the formation of scar tissue composed of glial cells

    • Certain areas of the adult brain possess neural stem cells, but their capability of repairing damage to neurons or neuroglia is still uncertain

Page 89: Tissue Damage & Injury

  • Causes of tissue damage and injury include trauma, disease (homeostatic imbalance), or simple wear and tear

  • Physical trauma is an injury to living tissue caused by an extrinsic agent

  • Two main types of physical trauma are:

    1. Blunt force trauma—when an object or force strikes the body, often causing hematoma and/or broken bones

    2. Penetrating trauma—when an object pierces the skin or body, usually creating an open wound e.g., a needle or knife

  • Strains and sprains are caused by wear and tear

Page 90: Haemostasis

  • Blood vessels are often damaged as a result of wear and tear and physical trauma

  • Haemostasis is the stoppage of bleeding resulting from a break in a blood vessel in order to maintain blood volume

  • Haemostasis involves three phases:

    1. Vascular spasms

    2. Platelet plug formation

    3. Coagulation (blood clotting)

Page 91: Haemostasis

  1. Vascular spasms:

  • Vasoconstriction causes blood vessels to spasm and decreases blood loss

  1. Platelet plug formation:

  • Collagen fibers are exposed by a break in a blood vessel

  • Platelets become "sticky" and cling to fibers

  • Anchored platelets release chemicals to attract more platelets (positive feedback)

  • Platelets pile up to form a platelet plug

Page 93: Haemostasis

  1. Coagulation:

  • The blood is transformed from a liquid to a gel

  • Injured tissues release chemicals and calcium ions that trigger a clotting cascade

  • Prothrombin activator converts prothrombin to thrombin (an enzyme)

  • Thrombin joins fibrinogen proteins into insoluble fibrin

  • Fibrin forms a meshwork (the basis for a blood clot) which traps RBCs

  • Blood usually clots within 3 to 6 minutes

  • The clot remains as the endothelium regenerates

  • The clot is broken down after tissue repair by fibrinolysis

Page 96: Haematoma

  • A collection of coagulated blood outside a blood vessel but within the body

  • A haemorrhage is active, ongoing bleeding

  • Can be seen under the skin or nails as bruises (aka contusions)

  • Can also happen deep inside the body where they may not be visible

  • During the healing process, oxygen-rich blood loses oxygen (red → purple/blue), then the RBCs degrade and haemoglobin breaks down biliverdin (green) → bilirubin (yellow) → haemosiderin (brown)

  • Phagocytosis clears the breakdown products from the area

Page 97: Open Wound Healing

  • There are two kinds of wound healing:

    • Epidermal wound healing occurs following superficial wounds that affect only the epidermis

      • Usually return to normal function

    • Deep wound healing occurs when an injury extends to the dermis and subcutaneous layer

      • Usually loss of some function and development of scar tissue

Page 98: Events in Wound Healing

  • Inflammation and Haemostasis

    • Injured blood vessels bleed

    • Inflammatory chemicals are released

    • Haemostasis occurs in injured blood vessels

    • Uninjured capillaries become very permeable

    • Clotting proteins migrate into the area

    • A clot walls off the injured area

  • Organisation and blood supply restored

    • Growth of new capillaries

    • The blood clot is replaced with granulation tissue

    • Epithelium begins to regenerate

    • Fibroblasts produce collagen fibres to bridge the gap

    • Debris is phagocytized

Page 99: Marieb 2017 Figure 4.12, step 1

  • Inflammation sets the stage:

    • Severed blood vessels bleed and inflammatory chemicals are released

    • Local blood vessels become more permeable, allowing white blood cells, fluid, clotting proteins, and other plasma proteins to seep into the injured area

    • Clotting occurs; surface dries and forms a scab

Page 100: Regenerating epithelium

  • Organization restores the blood supply:

    • The clot is replaced by granulation tissue, which restores the vascular supply

    • Fibroblasts produce collagen fibers that bridge the gap

    • Macrophages phagocytize cell debris

    • Surface epithelial cells multiply and migrate over the granulation tissue

Page 101: Events in Wound Healing

  • Regeneration and fibrosis

    • Regeneration of surface epithelium

    • Scab detaches

    • Fibrous tissue matures; epithelium thickens and begins to resemble adjacent tissue

    • Results in a fully regenerated epithelium with underlying scar tissue

Page 102: Regenerated epithelium

  • Regeneration and fibrosis effect permanent repair:

    • The fibrosed area matures and contracts; the epithelium thickens

    • A fully regenerated epithelium with an underlying area of scar tissue results

Page 103: Scab Blood clot in Regenerating epithelium incised wound

  • Inflammation sets the stage:

    • Severed blood vessels bleed and inflammatory chemicals are released

    • Local blood vessels become more permeable, allowing white blood cells, fluid, clotting proteins, and other plasma proteins to seep into the injured area

    • Clotting occurs; surface dries and forms a scab

  • Organization restores the blood supply:

    • The clot is replaced by granulation tissue, which restores the vascular supply

    • Fibroblasts produce collagen fibers that bridge the gap

    • Macrophages phagocytize cell debris

    • Surface epithelial cells multiply and migrate over the granulation tissue

  • Regeneration and fibrosis effect permanent repair:

    • The fibrosed area matures and contracts; the epithelium thickens

    • A fully regenerated epithelium with an underlying area of scar tissue results

Page 104: Bone Fractures

  • Fracture—break in a bone

  • Types of bone fractures

    • Closed (simple) fracture—break that does not penetrate the skin

    • Open (compound) fracture—broken bone penetrates through the skin

  • Bone fractures are treated by reduction and immobilization

Page 105: TABLE 5.2 Common Types of Fractures

  • Fracture type

    • Comminuted

      • Bone breaks into many fragments

      • Particularly common in older people, whose bones are more brittle

    • Compression

      • Bone is crushed

      • Common in porous bones (i.e., osteoporotic bones of older people)

    • Depressed

      • Broken bone portion is pressed inward

      • Typical of skull fracture

    • Impacted

      • Broken bone ends are forced into each other

      • Commonly occurs when one attempts to break a fall with outstretched arms

    • Spiral

      • Ragged break occurs when excessive twisting forces are applied to a bone

      • Common sports fracture

    • Greenstick

      • Bone breaks incompletely, much in the way a green twig breaks

      • Common in children, whose bones are more flexible than those of adults

Page 106: Repair of Bone Fractures

  • Haematoma (blood-filled swelling) is formed

  • The break is splinted by fibrocartilage to form a callus

    • Phagocytes remove cellular debris and fibroblasts deposit collagen to form the callus

  • Fibrocartilage callus is replaced by a bony callus of spongy bone

  • Bony callus is remodeled to form a permanent patch

    • The spongy bone is replaced by compact bone

Page 107: Hematoma External Bony callus callus of spongy bone New Internal blood callus vessels Healed (fibrous fracture tissue and Spongy cartilage) bone trabecula

  • Hematoma

  • Fibrocartilage callus forms

  • Bony callus forms

  • Bone remodeling occurs

Page 108: Burns

  • Tissue damage caused by excessive heat, electricity, radioactivity, or corrosive chemicals that denature the proteins in the skin cells

  • Immediate threat = Dehydration and electrolyte imbalance, leading to renal shutdown and circulatory shock

  • Burns are graded according to their severity

    • A first-degree burn involves only the epidermis

    • A second-degree burn destroys the epidermis and part of the dermis

    • A third-degree burn is a full-thickness burn (epidermis, dermis, and subcutaneous layer)

Page 110: Burns

  • Critical if:

    • 25% of the body has second-degree burns

    • 10% of the body has third-degree burns

    • Third-degree burns on the face, hands, feet, or perineum

    • When the burn area >70%, more than half the victims die

  • The rule of nines is used to quickly estimate the surface area affected by a burn

Page 112: Strain

  • Stretching or tearing of skeletal or cardiac muscle fibers

  • Classified depending on the severity of muscle fiber damage:

    • Grade I – mild: only a few muscle fibers are stretched or torn. Muscle is intact and has normal strength

    • Grade II – moderate: with a greater number of injured fibers. There is inflammation, loss of strength, and may be bruising (due to blood vessel damage)

    • Grade III - tears the muscle all the way through. Complete loss of muscle function. There is inflammation and bruising. May require surgery.

Page 113: Sprain

  • The stretch or tear of ligaments

  • Grade 1 - the ligament is stretched but not torn

  • Grade 2 - the ligament is partially torn. Can be inflammation and bruising

  • Grade 3 – the ligament is completely torn or ruptured. There is inflammation and bruising

  • In severe cases, joints can become unstable

  • Bones can move out of alignment

  • Joint may extend beyond its normal range of motion

  • Severe sprains sometimes require surgery to repair torn ligaments