SG

Comprehensive CHEM II Laboratory Review

Thin Layer Chromatography (TLC)

  • PURPOSE
    • Separate tiny quantities of compounds; forensic use for dye ID.
    • Calculate Rf (distance spot ÷ distance solvent front). • Relate Rf to polarity & IM-forces.

  • HARDWARE / PHASES
    • Stationary phase: \text{SiO}2 or Al a on glass/plastic (≈0.25 mm). • Mobile phase: chosen solvent drawn upward by capillarity. • Greater attraction for solvent → larger Rf; greater attraction for plate → smaller R_f.

  • PROCEDURE
    • Draw start line 1 cm from bottom, 5 spots (crime sample + 4 suspects).
    • Spot ≤ 2 mm; darken by re-spotting.
    • Place TLC into chamber with solvent below start line; saturate vapor with filter paper.
    • Develop until solvent ≈1 cm from top; mark solvent front immediately.
    • Visualize (visible, UV, or stain); measure all distances; compute R_f.

  • PRE-LAB CONCEPTS
    • Tight, small spot needed; size influences resolution.
    • Starting line & solvent level critical.
    • Do not let solvent run off plate before marking front.


Phase Diagram of t-Butyl Alcohol

  • OBJECTIVES
    • Locate triple, boiling & freezing points; sketch P–T diagram.
    • Reinforce concepts of vapor pressure, phase coexistence, Tb, Tf.

  • TRIPLE-POINT APPARATUS
    • Test tube w/ t-BuOH + boiling chips, thermometer through #4 stopper, vacuum line via water aspirator.
    • Under ~42.4\,\text{mmHg} observe simultaneous boiling & freezing → record T_{tp}.

  • BOILING POINT
    • Heat 600 mL water bath; immerse tube; read constant vapor-temperature (≈ normal T_b at lab P).

  • FREEZING POINT
    • Cold-water (≈18 °\mathrm C) bath; stir continually; record plateau temperature while solid forms.

  • DATA ANALYSIS
    • Plot \ln P vs 1/T or simple sketch marking solid, liquid, gas fields; label all three key T’s.

  • KEY EQUATIONS
    • Clausius–Clapeyron \displaystyle \ln P = -\frac{\Delta H_{vap}}{R}\,\frac1T + C


Boiling-Point Elevation & Molar-Mass Determination

  • THEORY
    • Colligative property: \Delta Tb = Kb m (independent of solute identity).
    • m = molality = \dfrac{n_{sol}}{\text{kg solvent}}.

  • PROCEDURE

    1. Find pure ethanol T_b in 90 °C water bath.
    2. Prepare 1 m, 2 m, 3 m ethylene-glycol / ethanol solutions (density 0.789\,\text{g mL}^{-1}).
    3. Record elevated Tb; plot \Delta Tb vs m → slope =K_b^{\,(EtOH)}.
    4. Dissolve unknown sample with mass equal to 1 m EG mass; measure \Delta Tb; compute molality then moles; M = m{unk}/n_{unk}.
  • SAFETY: ethanol & ether are flammable; EG toxic.


Chemical Kinetics – Dye + Bleach

  • RATE LAW
    \text{Rate}=k[\text{dye}]^{a}[\text{OCl}^-]^{b}
    • Pseudo-order: large excess NaOCl ⇒ k' = k[\text{OCl}^-]^b.

  • EXPERIMENT
    • Microlab spectro-kinetics at 525 nm; follow fade of FD&C Red #3 or Blue #1.
    • Plot \ln[\text{dye}] vs t (1st-order) and 1/[\text{dye}] vs t (2nd-order).
    • Best linear fit → order in dye; slope =-k'.
    • Repeat with new [OCl⁻]; compare k' values ⇒ determine b & true k.


Chemical Equilibrium – FeSCN²⁺ System

  • REACTION
    \ce{Fe^{3+} + SCN^-

  • EQUILIBRIUM CONSTANT
    • Measure absorbance at 468 nm; \varepsilon=7260\,\text{M}^{-1}\text{cm}^{-1}.
    • [\text{FeSCN}^{2+}] = A/(\varepsilon b), use RICE to back-calculate reactant eq. conc.; compute K_c (triplicate trials, 𝑇 ≈ rt).

  • LE CHÂTELIER TESTS
    • Add various salts/temperature changes; note colour shift: darker → right (products), paler → left (reactants).


Redox Titration – Fe in Supplements

  • STOICHIOMETRY
    \ce{MnO4^- + 5Fe^{2+} + 8H^+ → Mn^{2+} + 5Fe^{3+} + 4H2O}
    • Endpoint: first persistent faint pink \text{MnO}_4^- excess.

  • ANALYSIS STEPS

    1. Dissolve crushed tablet in \ce{H2SO4}.
    2. Titrate 10 mL aliquots w/ standard 0.0020\,\text M KMnO_4 (triplicate).
    3. Moles \ce{Fe^{2+}} = \dfrac{1}{5} n_{\ce{MnO4^-}}.
    4. Convert to mg Fe; %Fe = (mg Fe / tablet mass)×100.

Thermodynamics via CoCl₂ Complexation

  • EQUILIBRIUM
    \ce{[Co(H2O)6]^{2+} + 4Cl^-

  • DATA COLLECTION
    • Record absorbance at \lambda{max} (≈ 650 nm for blue species) at 10° C steps (10–40 °C). • K = \dfrac{[\text{CoCl}4^{2-}]}{[\text{Co(H}2\text O)6^{2+}][Cl^-]^4} (Cl⁻ large excess ⇒ constant).
    • Plot \ln K vs 1/T : slope =-\Delta H^\circ/R; intercept = \Delta S^\circ/R.
    • \Delta G^\circ = -RT\ln K at each T.


Acid–Base & Titration Concepts

  • WEAK-ACID Ka Ka = \frac{[H_3O^+][A^-]}{[HA]} ;
    % ionization increases on dilution.

  • STRONG ACID–STRONG BASE CURVE
    • S-shaped; equivalence pH=7.
    • Half-equivalence of weak acid: pH = pK_a.

  • BUFFER
    \text{pH}=pKa+\log\frac{[\text{base}]}{[\text{acid}]} (Henderson-Hasselbalch). • Effective range pKa ±1.


Polyprotic Acid Titration

  • Diprotic example: \ce{H2A}
    • Two equivalence points; volumes ratio 1 : 1.
    • K{a1} from pH at 1st half-eq; K{a2} from 2nd.

Solubility Product of \text{Ca(OH)}_2

  • EQUILIBRIUM
    \ce{Ca(OH)2(s)

  • TITRIMETRIC DETERMINATION

    1. Filter saturated Ca(OH)₂ (discard first 5 mL).
    2. Titrate 10.00 mL aliquots with 0.0500\,\text M HCl using phenolphthalein.
    3. n{\text{OH}^-}=n{HCl}; [OH^-]=n/V; [Ca^{2+}] = 0.5[OH^-].
    4. Calculate K_{sp} and molar solubility s=[Ca^{2+}]; average over 3 trials.
  • COMMON-ION TEST
    • Add drops of \ce{NaOH}, \ce{CaCl2}, \ce{HCl}, etc. to aliquots; monitor pH shifts:
    – Add OH⁻ or Ca²⁺ → ↓solubility (shift left).
    – Add H⁺ or precipitating \ce{Ag^+} (removes OH⁻) → ↑solubility (shift right).


Electrochemistry

  • STANDARD CELL POTENTIAL
    E^\circ{cell}=E^\circ{\text{cath}}-E^\circ_{\text{anode}}
    • Positive ⇒ spontaneous (voltaic).

  • LINE NOTATION
    \text{Zn}|\text{Zn}^{2+}||\text{Cu}^{2+}|\text{Cu}

  • ELECTROLYTIC CALCULATIONS (Faraday’s Law)
    • Charge Q=It, 1\,\text F = 96485\,\text C\,\text{mol}^{-1}\,e^-.
    • Mass plated m = \dfrac{ItM}{nF}.

  • ELECTROPLATING EXAMPLE
    • Ni²⁺ + 2e⁻ → Ni(s) on Cu; at 5 V, 600 s, measured 1.02\times10^{-3}\,\text{mol }e^- ⇒ Q ≈ 98 C, I ≈ 0.16 A, theoretical Ni mass \approx 0.030 g (close to observed 0.029 g).


General Lab & Data Quality

  • Discard initial filtrate when filtering saturated solutions (filter paper adsorption).
  • Deviations: DEVi = |xi - \bar x|; AD = \frac{\sum DEV}{n}.
  • Maintains CO₂-free basic solutions; quick titration reduces error.
  • Safety: acids corrosive, bases caustic, KMnO₄ strong oxidizer, Cr⁶⁺ toxic, heavy-metal waste collected.