I_c = JA = \sigma EA, where A is the cross-section of the wire.
E = \frac{I_c}{\sigma A} = \frac{2 \times 10^{-3} \sin(\omega t)}{2 \times 10^7 A} = \frac{10^{-10} \sin(\omega t)}{A} (V/m).
D = \epsilon E, so I_d = \frac{\partial D}{\partial t} A = \epsilon A \frac{\partial E}{\partial t}.
I_d = \epsilon A \frac{\partial}{\partial t} (\frac{10^{-10}}{A} \sin(\omega t)) = \epsilon \omega \times 10^{-10} \cos(\omega t) = 8.85 \times 10^{-12} \times 10^9 \times 10^{-10} \cos(\omega t) = 0.885 \times 10^{-12} \cos(\omega t) (A).
Ic and Id are in phase quadrature (90° phase shift between them).
Id is about nine orders of magnitude smaller than Ic, so the displacement current usually is ignored in good conductors.
General Form: \hat{n}2 \cdot (B1 - B_2) = 0
Notes: