Electromagnetic Field Theory and Capacitors
Dielectric Materials and Electric Fields
Polarization
- When an external electric field E_{ext} is applied to a dielectric material, the material becomes polarized.
- Involves the alignment of electric dipoles within the material.
- Atom behavior:
- Without an external electric field (E_{ext} = 0), the center of the electron cloud coincides with the nucleus.
- With an external electric field (E_{ext} \neq 0), the electron cloud shifts, creating an electric dipole.
- This shift results in positive and negative surface charges on the material.
- Polarization Field P: Represents the electric flux density induced by the electric field E. P = \varepsilon0 \varepsilonr E = \varepsilon E
Electric Breakdown
- Dielectric Strength (E_{ds}): The maximum electric field magnitude that a material can withstand without experiencing breakdown.
- Table of Relative Permittivity and Dielectric Strength of Common Materials:
- Air (at sea level): \varepsilonr = 1.0006, E{ds} = 3 MV/m
- Petroleum oil: \varepsilonr = 2.1, E{ds} = 12 MV/m
- Polystyrene: \varepsilonr = 2.6, E{ds} = 20 MV/m
- Glass: \varepsilonr = 4.5-10, E{ds} = 25-40 MV/m
- Quartz: \varepsilonr = 3.8-5, E{ds} = 30 MV/m
- Bakelite: \varepsilonr = 5, E{ds} = 20 MV/m
- Mica: \varepsilonr = 5.4-6, E{ds} = 200 MV/m
- Permittivity: \varepsilon = \varepsilon0 \varepsilonr and \varepsilon_0 = 8.854 \times 10^{-12} F/m
Joule’s Law
- Power Dissipated: The power dissipated in a volume due to an electric field E and current density J is given by: P = \intV E \cdot J dV = \intS E \cdot I dS
- For a Resistor: Joule’s law simplifies to P = VI
- Homogeneous Conductor:
- Constant cross-section A.
- Uniform electric field E.
Boundary Conditions
- Perfect Dielectric: J = 0
- Perfect Conductor: E = 0 (Net electric field inside a conductor is zero).
- Electric field direction is always perpendicular to the conductor surface.
- General Equations
- D = \varepsilon E
- D{1n} = \rhos
- E_{1t} = 0
- Normal component of D changes abruptly at a charged boundary between two different media by an amount equal to the surface charge density.
- {\hat{w}2} \cdot (D1 - D2) = \rhos (C/m²)
- D{1n} - D{2n} = \rho_s (C/m²)
- Tangential components of the Electric field are the same
- E{1t} = E{2t}, or \frac{D{1t}}{\varepsilon1} = \frac{D{2t}}{\varepsilon2}
Summary of Boundary Conditions
Field Component | Any Two Media | Conductor-Dielectric Boundary | Medium 2 |
---|
| Medium 1: Dielectric \varepsilon_1 | | |
Tangential E | E{1t} = E{2t} | E{1t} = E{2t} = 0 | |
Tangential D | \frac{D{1t}}{\varepsilon1} = \frac{D{2t}}{\varepsilon2} | D{1t} = D{2t} = 0 | |
Normal E | \varepsilon1 E{1n} - \varepsilon2 E{2n} = \rho_s | E{1n} = \frac{\rhos}{\varepsilon_1} | |
E_{2n} = 0 | | | |
Normal D | D{1n} - D{2n} = \rho_s | D{1n} = \rhos | |
D_{2n} = 0 | | | |
- \rho_s is the surface charge density at the boundary.
- Normal components of E1, D1, E2, and D2 are along {\hat{n}_2}, the outward normal unit vector of medium 2.
- Remember E = 0 in a good conductor.
General Rule reminder
- \sigma1 J{1n} = \sigma2 J{2n}
- J{1t} = J{2t}
Boundary Conditions: Scenarios
Scenario Setup
- Two media are separated by an interface with an electric field E_1 in medium 1.
- Need to find E_2 given the properties of both media.
- Medium 1: Permittivity \varepsilon1, conductivity \sigma1
- Medium 2: Permittivity \varepsilon2, conductivity \sigma2
- Angle between E1 and the interface normal: \theta1
- Angle between E2 and the interface normal: \theta2
- Electric Field Vector Equations:
- E1 = E1 \cos(\theta1) \hat{x} + E1 \sin(\theta_1) \hat{z}
- E2 = E2 \cos(\theta2) \hat{x} - E2 \sin(\theta_2) \hat{z}
Scenario 1: Medium 1 is a Perfect Dielectric, Medium 2 is a Perfect Conductor
- \rhos \neq 0; \sigma1 = 0; \sigma_2 = \infty
- E_2 = 0
- J_1 = 0
- \hat{n}2 \cdot (D1 - D2) = \rhos: -\varepsilon1 E1 \sin(\theta1) + \varepsilon2 E2 \sin(\theta2) = \rho_s
- \rhos = -\varepsilon1 E1 \sin(\theta1)
Scenario 2: Medium 1 is a Perfect Dielectric, Medium 2 is a Perfect Dielectric
- \rhos = 0; \sigma1 = 0; \sigma_2 = 0
- Tangential components are equal: E{1t} = E{2t} \Rightarrow E1 \cos(\theta1) = E2 \cos(\theta2)
- Normal components of displacement vector: \hat{n}2 \cdot (D1 - D2) = 0 \Rightarrow -\varepsilon1 E1 \sin(\theta1) + \varepsilon2 E2 \sin(\theta_2) = 0
- \frac{E1}{E2} = \frac{\cos(\theta2)}{\cos(\theta1)} = \frac{\varepsilon2 \sin(\theta2)}{\varepsilon1 \sin(\theta1)}
- \frac{\tan(\theta2)}{\tan(\theta1)} = \frac{\varepsilon1}{\varepsilon2}
Scenario 3: Medium 1 is a Lossy Dielectric, Medium 2 is a Lossy Dielectric
- \rhos \neq 0; \sigma1 \neq 0; \sigma_2 \neq 0
- Tangential E field is continuous: E1 \cos(\theta1) = E2 \cos(\theta2)
- Normal J is continuous: \sigma1 E1 \sin(\theta1) = \sigma2 E2 \sin(\theta2)
- \frac{E1}{E2} = \frac{\cos(\theta2)}{\cos(\theta1)} = \frac{\sigma2 \sin(\theta2)}{\sigma1 \sin(\theta1)}
- \frac{\tan(\theta2)}{\tan(\theta1)} = \frac{\sigma1}{\sigma2}
- s field behavior: \hat{n}2 \cdot (D1 - D2) = \rhos: -\varepsilon1 E1 \sin(\theta1) + \varepsilon2 E2 \sin(\theta2) = \rho_s
- \rhos = E2 \sin(\theta2) \left( \frac{\sigma1 \varepsilon2}{\sigma2} - \varepsilon_1 \right)
Capacitance
- Definition: The capacitance C of a two-conductor configuration is defined as: C = \frac{Q}{V} (C/V or F)
- Where:
- Q is the charge
- V is the voltage
Calculating Capacitance
- General Formula:
- Q{incl} = \ointS \varepsilon E \cdot dS
- V = - \int_{ab} E \cdot dl
- Capacitance Formula:
- C = \frac{\oint_S \varepsilon E \cdot dS}{-\int E \cdot dl} (F)
- Resistance Formula:
- R = \frac{\int E \cdot dl}{\int \sigma E \cdot dS} (\Omega)
- RC Product: For a medium with uniform \sigma and \varepsilon, RC = \frac{\varepsilon}{\sigma}
Example Parellel Plate Capacitor
- Assumptions:
- Neglect fringing effects (A >> d).
- Relationship
- Q = \varepsilon E A
- V = - \int (-E) \cdot dz = Ed
- C = \frac{Q}{V} = \frac{\varepsilon A}{d}
- V = E d , At breakdown: V{br} = E{ds} d
Example: Coaxial Line
- Electric Field: The electric field between the conductors is: E = -\hat{r} \frac{Q}{2 \pi \varepsilon \rho l}
- Potential Difference: The potential difference V between the outer and inner conductors is:
- V = - \inta^b E \cdot dl = - \inta^b -\hat{r} \frac{Q}{2 \pi \varepsilon \rho l} \cdot (\hat{r} d\rho) = \frac{Q}{2 \pi \varepsilon l} \ln(\frac{b}{a})
- Capacitance: The capacitance C is then given by:
- C = \frac{Q}{V} = \frac{2 \pi \varepsilon l}{\ln(b/a)}
- Capacitance per Unit Length: C' = \frac{C}{l} = \frac{2 \pi \varepsilon}{\ln(b/a)} (F/m)