Geometry Brain Dump – First Semester
- Pythagorean Theorem: a^2 + b^2 = c^2
- Slope-Intercept Form: y = mx + b
- Point-Slope Form: y − y1 = m(x − x1)
- Side-Splitter Theorem:
- \frac{AP}{PB} = \frac{AQ}{QC}
- \frac{PB}{AB} = \frac{QC}{AC}
- Geometric Mean Altitude Theorem: \frac{HC}{HA} = \frac{HA}{HB} \implies HC \cdot HB = (HA)^2
- Geometric Mean Leg Theorem: \frac{HB}{BA} = \frac{BA}{BC} \implies HB \cdot BC = (BA)^2
Angle Relationships
- Linear Pair: Sum of 180^\circ, forms straight line
- Supplementary: Sum of 180^\circ
- Complementary: Sum of 90^\circ
- Acute: Less than 90^\circ
- Right: 90^\circ
- Obtuse: In between 90^\circ and 180^\circ
- Straight: 180^\circ
- Vertical: Congruent, equal measures
- Alternate Interior: Congruent, equal measures
- Alternate Exterior: Congruent, equal measures
- Corresponding: Congruent, equal measures
- Same Side (Consecutive) Interior: Sum of 180^\circ
- Same Side (Consecutive) Exterior: Sum of 180^\circ
Rotation Rules
- 90^\circ Clockwise or 270^\circ Counterclockwise: (x, y) \rightarrow (y, -x)
- 90^\circ Counterclockwise or 270^\circ Clockwise: (x, y) \rightarrow (-y, x)
- 180^\circ: (x, y) \rightarrow (-x, -y)
Reflection Rules
- Over x-axis: (x, y) \rightarrow (x, -y)
- Over y-axis: (x, y) \rightarrow (-x, y)
- Over y = x: (x, y) \rightarrow (y, x)
- Over y = -x: (x, y) \rightarrow (-y, -x)
Dilation Rule
- Dilation with respect to the origin and scale factor of k: (x, y) \rightarrow (kx, ky)
Triangle Types
- Right Triangle: One right angle
- Acute Triangle: Three acute angles
- Obtuse Triangle: One obtuse angle
- Equiangular Triangle: All 60^\circ angles
- Isosceles Triangle: Two congruent sides/angles
- Scalene Triangle: No congruent sides/angles
- Equilateral Triangle: Three congruent sides
Triangle Congruence
- Side-Side-Side (SSS)
- Side-Angle-Side (SAS)
- Angle-Side-Angle (ASA)
- Angle-Angle-Side (AAS)
- Hypotenuse-Leg (HL)
Triangle Similarity
- Angle-Angle (AA~)
- Side-Side-Side (SSS~)
- Side-Angle-Side (SAS~)
- Rigid Transformations (Preserves Distance): Translations, Reflections, Rotations
- Non-Rigid Transformation (Does Not Preserve Distance if scale factor is not 1): Dilations
Conditional Statements (Given p \rightarrow q)
- Converse: q \rightarrow p
- Inverse: \sim p \rightarrow \sim q
- Contrapositive: \sim q \rightarrow \sim p
- Biconditional: p \leftrightarrow q