JC

BAS CAL | Derivatives

Tangent and Secant Lines

Tangent Line

  • a line that is tangent to a curve or a part of a function at only one point

Secant Line

  • a line that crosses a curve or a part of a function at two points

Tangent and Secant line

  • To create the tangent line, the two points of the secant line must approach each other, justifying the use of limits.

How to solve for slope of tangent line

Formula

  • m_{\sec}=\frac{y_2-y_1}{x_2-x_1}

  • m_{\tan}=\lim_{x_2\to x_1}\frac{y_2-y_1}{x_2-x_1}

Steps

  1. Let (x1, y1) be the given coordinates, and let (x2, y2) be arbitrary coordinates.

  2. Replace (x1, y1) in the limit formula with the given coordinates.

  3. Replace y2 with the function equation. You should end up with an indeterminate function or 0/0 when x is substituted with the given.

  4. Solve the limit as usual.

Derivatives (f’)

Definition

  • “slope of the tangent line”

Forms

  • f^{\prime}\left(x\right) | “f prime of x”

  • y^{\prime} | “y prime”

  • dy/dx | “the derivative of y with respect to x

Derivatives in Relation to the Slope

Given points \left(x_0,y_0\right) ,

  • f^{\prime}\left(x_0\right)=\lim_{x\to x_0}\frac{f\left(x\right)-f\left(x_0\right)}{x-x_0}

  • D_{x}\left\lbrack f\left(x\right)\right\rbrack= d/dx[f(x)] = d/dx[y] = dy/dx

Formula (Delta Method)

  • f^{\prime}\left(x\right)=\lim_{x\to}\frac{f\left(x\right)-f\left(x+\Delta x\right)}{\Delta x}

Differentiation

  • the process of computing for the derivative

Main Derivative Rules

The Constant Rule

  • f^{\prime}\left(c\right)=0 | c is a constant

The Power Rule

  • f^{\prime}\left(x^{n}\right)=nx^{n-1} | n is a real number

The Constant Multiple

  • f^{\prime}\left(cx\right)=c\left(f^{\prime}\left(x\right)\right) | c is a constant number

The Sum and Difference Rule

  • f^{\prime}\left(g\left(x\right)\pm h\left(x\right)\right)=g^{\prime}\left(x\right)\pm h^{\prime}\left(x\right)

The Product Rule

  • f^{\prime}\left(g\left(x\right)\cdot h\left(x\right)\right)=g^{\prime}\left(x\right)\cdot h\left(x\right)+g\left(x\right)\cdot h^{\prime}\left(x\right)

The Quotient Rule

  • f^{\prime}\left(\frac{g\left(x\right)}{h\left(x\right)}\right)=\frac{h\left(x\right)g^{\prime}\left(x\right)-h^{\prime}\left(x\right)g\left(x\right)}{\left\lbrack g\left(x\right)\right\rbrack^2}

  • f^{\prime}\left(\frac{hi}{lo}\right)=\frac{lo\cdot d\left\lbrack hi\right\rbrack-hi\cdot d\left\lbrack lo\right\rbrack}{lolo}

The Chain Rule

  • f^{\prime}\left(h\left(g\left(x\right)\right)\right)=h^{\prime}\left(g\left(x\right)\right)\cdot g^{\prime}\left(x\right)

The General Power Rule

  • f^{\prime}\left(\left\lbrack g\left(x\right)\right\rbrack^{n}\right)=n\left\lbrack g\left(x\right)\right\rbrack^{n-1}\cdot g^{\prime}\left(x\right)

Rewriting Exponents

  • If a function or term is in the numerator, make its exponent negative

  • If a function or term is under an nth root, make its exponent 1/n

Other Derivative Rules

Exponential Functions

  • f^{\prime}\left(b^{x}\right)=b^{x}\ln b

  • f^{\prime}\left(e^{x}\right)=e^{x}

Logarithmic Functions

  • f^{\prime}\left(\log_{b}x\right)=\frac{1}{x\ln b}

  • f^{\prime}\left(\ln b\right)=\frac{1}{x}

Trigonometric Functions

  • f^{\prime}\left(\sin x\right)=\cos x

  • f^{\prime}\left(\cos x\right)=-\sin x

  • f^{\prime}\left(\tan x\right)=\sec^2x

  • f^{\prime}\left(\csc x\right)=-\csc x\cot x

  • f^{\prime}\left(\sec x\right)=\sec x\tan x

  • f^{\prime}\left(\cot x\right)=-\csc^2x

Normal Line

  • the line perpendicular to the tangent line

Higher Order Derivatives

  • repeated process of taking derivatives of derivatives