DS

Functional Anatomy of Prokaryotic and Eukaryotic Cells

Terminology & Evolutionary Background

  • Prokaryote derives from Greek roots meaning “before nucleus” (literally “before kernel”).

  • Eukaryote translates as “true nucleus.”

  • Serial Endosymbiosis Theory (SET)

    • Eukaryotic cells likely emerged from symbioses among multiple prokaryotes > 2 \text{ billion years} ago.

    • Evidence: Molecular systematics show mitochondria ≈ "purple" bacteria, chloroplasts ≈ cyanobacteria, flagella ≈ spirochetes.

    • Membrane-infolding model explains origin of endomembrane system (ER, nuclear envelope).

Comparative Overview: Prokaryote vs. Eukaryote

  • Genetic material

    • Prokaryote: One circular chromosome, NOT membrane-bound, no histones.

    • Eukaryote: Paired linear chromosomes inside nuclear envelope, histone proteins present.

  • Internal structures

    • Prokaryote: No membrane-bound organelles.

    • Eukaryote: Extensive organelles (ER, Golgi, mitochondria, etc.).

  • Cell division

    • Prokaryote: Binary fission.

    • Eukaryote: Mitotic spindle → mitosis.

  • Cell wall composition

    • Prokaryote: Peptidoglycan (bacteria) or pseudomurein (some Archaea).

    • Eukaryote: Cellulose (plants/algae), chitin (fungi), glucan/mannan (yeast) or none (animals—with glycocalyx instead).

Size, Shape & Arrangement of Bacterial Cells

  • Average dimensions: 0.2{-}1.0\, \mu m \times 2{-}8\, \mu m.

  • Basic morphologies

    • Cocci (spherical), Bacilli (rod-shaped), Spirals (vibrio, spirillum, spirochaete).

  • Unusual forms

    • Stella (star-shaped), Haloarcula (square archaeon).

    • Most species are monomorphic; a few are pleomorphic.

  • Typical arrangements

    • Pairs: diplococci, diplobacilli.

    • Chains: streptococci, streptobacilli.

    • Clusters: staphylococci.

Glycocalyx

  • Sticky layer external to cell wall; polymer is usually polysaccharide (extracellular polysaccharide, EPS).

  • Capsule: Neatly organized, firmly attached → immune evasion (anti-phagocytic).

  • Slime layer: Loose, unorganized, facilitates surface attachment (biofilms).

Flagella (Prokaryotic)

  • Structure

    • Filament (flagellin chains) + Hook + Basal body (anchors through wall and membrane).

  • Arrangements

    • Monotrichous (single), Amphitrichous (one at each pole), Lophotrichous (tufts at a pole), Peritrichous (all over).

  • Motility mechanics

    • Rotation → “run” (straight) or “tumble” (re-orient).

    • Chemotaxis & phototaxis = movement toward/away from stimuli.

    • Flagellar proteins serve as H antigens (e.g., E.\ coli\,O157{:}H7).

Axial Filaments (Endoflagella)

  • Found in spirochetes; anchored at one end within periplasmic space.

  • Rotation of the filament generates corkscrew motion through viscous media.

Fimbriae & Pili

  • Fimbriae: Numerous short appendages; key for adhesion to surfaces/host tissues.

  • Pili (sex pili): Longer; mediate DNA transfer between cells via conjugation.

Peptidoglycan & Cell Wall Architecture

  • Peptidoglycan = Polymer of alternating \text{NAG} & \text{NAM} disaccharides cross-linked by short peptides.

  • Functions: Structural rigidity & protection against osmotic lysis.

Gram-Positive Wall
  • Thick peptidoglycan layer.

  • Teichoic acids

    • Wall teichoic acid peptidoglycan.

    • Lipoteichoic acid plasma membrane.

    • Regulate cation flow & confer antigenic specificity.

  • Acid-fast bacteria (e.g., Mycobacterium) embed mycolic acid within wall.

Gram-Negative Wall
  • Thin peptidoglycan + outer membrane.

  • Outer membrane components

    • Lipopolysaccharide (LPS): Lipid A (endotoxin) + O-polysaccharide antigen.

    • Porins: Protein channels for small molecules.

    • Periplasmic space houses enzymes, transport proteins.

  • Provides resistance to phagocytosis, complement, some antibiotics.

Gram Stain Mechanism
  1. Crystal violet + iodine forms CV-I complex.

  2. Alcohol

    • Gram +: Dehydrates thick wall → pores close; dye retained.

    • Gram −: Dissolves outer membrane & leaves gaps; dye washed out.

Atypical Walls & Wall Damage
  • Mycoplasma: No cell wall; sterols in plasma membrane.

  • Archaea: Wall-less or pseudomurein (lacks NAM, D-amino acids).

  • Agents of wall damage

    • Lysozyme cleaves \beta(1\rightarrow4) linkage (NAG–NAM).

    • Penicillin blocks peptide cross-bridges.

  • Resulting forms

    • Protoplast (wall-less Gram +), spheroplast (wall-less Gram −), L-forms (unstable wall-deficient cells) – all susceptible to osmotic lysis.

Plasma (Cytoplasmic) Membrane: Prokaryotes

  • Fluid-mosaic phospholipid bilayer (viscosity ≈ olive oil).

  • Protein types: Peripheral & integral (transmembrane) – migrate laterally to function.

  • Functions

    • Selective permeability.

    • Electron transport & ATP synthesis enzymes.

    • Pigmented infoldings (chromatophores/thylakoids) in photosynthetic species.

  • Damage agents: Alcohols, quaternary ammonium detergents, polymyxin antibiotics ⇒ leakage.

Membrane Transport Processes
  • Passive

    • Simple diffusion (down gradient).

    • Facilitated diffusion (transporter protein).

    • Osmosis (water movement); quantified by osmotic pressure.

    • Isotonic: No net H$_2$O.

    • Hypotonic: Water influx → osmotic lysis.

    • Hypertonic: Water efflux → plasmolysis.

  • Active

    • Primary active transport: Transporter + ATP.

    • Group translocation: Substrate chemically modified during import (requires \text{PEP}).

Prokaryotic Internal Features

  • Cytoplasm: Aqueous matrix inside membrane.

  • Nucleoid: Irregular region containing circular DNA; NOT a true nucleus.

  • Ribosomes: 70S = 30S + 50S; site of translation.

  • Inclusions (reserve deposits)

    • Metachromatic granules (volutin) – PO_4^{3-} storage.

    • Polysaccharide, lipid, sulfur granules – energy reserves/waste.

    • Carboxysomes – \text{RuBP}\, carboxylase for CO_2 fixation.

    • Gas vacuoles – buoyancy.

    • Magnetosomes – Fe3O4; orient to Earth’s field & detoxify H2O2.

  • Endospores (Bacillus, Clostridium)

    • Dormant, highly resistant to desiccation, heat, chemicals.

    • Sporulation = formation; germination = return to vegetative state.

Eukaryotic Cell Surface Structures

  • Flagella & Cilia

    • Core of microtubules (tubulin) arranged 9 + 2.

    • Movement via ATP-dependent dynein motors.

  • Cell walls (when present)

    • Plants/algae: Cellulose.

    • Fungi: Chitin.

    • Yeast: Glucan/mannan.

  • Glycocalyx in animal cells: Carbohydrate layer bonded to lipids/proteins; cell-to-cell recognition.

Eukaryotic Plasma Membrane

  • Similar bilayer but with sterols (cholesterol/ergosterol) for rigidity.

  • Transport repertoire

    • Passive: Simple/facilitated diffusion, osmosis.

    • Active transport (carrier + ATP).

    • Endocytosis

    • Phagocytosis (pseudopods engulf solids).

    • Pinocytosis (membrane invaginates fluid).

Eukaryotic Cytoplasmic Components

  • Cytosol + Cytoskeleton (microfilaments, intermediate filaments, microtubules).

  • Cytoplasmic streaming distributes nutrients, organelles.

Membrane-Bound Organelles

  • Nucleus: Enclosed by double membrane with nuclear pores; contains DNA & nucleolus.

  • Endoplasmic Reticulum (ER)

    • Rough ER: Ribosome-studded; protein synthesis & packaging.

    • Smooth ER: Lipid synthesis, detox.

  • Golgi Complex: Stack of cisternae; modifies, sorts, secretes proteins/lipids (vesicular traffic).

  • Lysosomes: Hydrolytic enzymes for intracellular digestion.

  • Vacuoles: Large in plants (turgor, storage); small food vacuoles in protozoa/animals.

  • Mitochondria: Double membrane; inner folds = cristae, matrix contains enzymes for cellular respiration & own 70S ribosomes.

  • Chloroplasts: Thylakoids (photosynthetic membranes) stacked into grana; own DNA & 70S ribosomes.

  • Peroxisomes: Oxidize fatty acids; catalase breaks down H2O2.

Non-Membranous Structures

  • Ribosomes

    • 80S (\approx 60S + 40S) in cytoplasm or bound to ER.

    • 70S remain within mitochondria & chloroplasts (supports SET).

  • Centrosome & Centrioles: Microtubule-organizing centers; build mitotic spindle.

Domains of Life (Three-Domain System)

  • Bacteria: Includes Gram-positive/negative, cyanobacteria, Thermotoga, etc.

  • Archaea: Methanogens, extreme halophiles, hyperthermophiles; ancestral to Eukarya.

  • Eukarya: Protists (Chromista, ciliates, slime molds, etc.), plants, fungi, animals.

  • Universal ancestor diverged into these domains.

Clinical & Practical Connections

  • Gram stain guides antibiotic therapy; Lipid A (endotoxin) triggers septic shock.

  • Capsule presence relates to pathogenicity (e.g., Streptococcus pneumoniae).

  • Mycoplasma sterols target of specific antimicrobials.

  • Lysozyme (saliva, tears) is a natural antibacterial.

  • Endospore resistance necessitates stringent sterilization (autoclaving).

  • Antibiotics (penicillin, polymyxin) exploit structural differences in walls/membranes.

  • SET explains mitochondrial disorders (maternal inheritance) due to prokaryotic ancestry.