Kinematics studies motion without considering the forces behind it.
Focus on basic concepts: position, velocity, and acceleration.
Introduces calculus concepts such as differentiation and integration.
Examines motion of a particle along a line, using a reference point (origin O).
Defined as the distance from the origin (O):
Positive if to the right of O.
Negative if to the left of O.
Units of Measurement:
Measured in units of length (e.g., feet, meters, light-years).
Standard unit: meters (S.I. units).
Position (s) changes with time (t).
Notation: s(t) indicates position is a function of time.
Units of Time:
Measured in seconds (preferred), or other units such as years or minutes.
Graphing Motion:
Plot time (t) on the horizontal axis and position (s) on the vertical axis.
Visualizing motion:
(a) s constant → particle at rest.
(b) s steadily increases → particle moving forward.
(c) particle moves out then returns to the origin.
(d) particle oscillates back and forth through the origin.
Velocity measures the rate of change of position (s) over time (t).
Quantifies how quickly the position changes and in which direction.
Example (a): If s is constant, velocity = 0 (particle at rest).
Example (b): For a linear s vs. t graph:
Change in position: s2 - s1.
Change in time: t2 - t1.
Velocity Definition:
v = (s2 - s1) / (t2 - t1)
Slope of the s vs. t graph indicates velocity (tan ϕ).
If s is in meters and t in seconds, then:
Velocity v = meters per second (m/s).
Velocity sign indicates direction:
v > 0: Positive slope → moving right.
v < 0: Negative slope → moving left.