knowt logo

Unit 3

Biomolecules (macromolecules)

  • Carbohydrates *

  • Lipids 

  • Proteins *

  • Nucleic Acids *


* Polymers: chemicals made up of many repeating units called monomers 

Dehydration RXN (condensation)

Short polymer with and H and monomer with OH connect to form a polymer with H2O

Hydrolysis RXN

Large polymer with H2O breaks into short polymer with and H and monomer with OH


Enzymes: proteins that allow rxns to take place

Hydrolytic enzymes: enzymes that use water to break down polymers 


Carbohydrates 

Empirical formula: CH2O 

Monomers of carbohydrates are called Monosaccharides. 

Functions:

  • Provide energy for all organisms 

  • Structure of plant fungi and bacteria 

  • Communication for cells 


Trioses (Сзнвоз) <br />Pentoses (С5Н10О5) <br />н <br />Н <br />GIyceraIdehyde <br />н—с—он <br />Dihydroxyacetone <br />сор,ччга тов , а. <br />н—с—он <br />н —он <br />н—с—он <br />н—с—он <br />н—с—он <br />о <br />н—с—он <br />но —с—н <br />н—с—он <br />но—с—н <br />н—с—он <br />н—с—он <br />Glucose <br />Ribose <br />н—с—он <br />Ribulose <br />Hexoses (С Н О ) <br />б 12 б <br />Н <br />н—с—он <br />НО —С— Н <br />н—с—он <br />н—с—он <br />Galactose <br />н—с—он <br />Fructose

Glucose 


Structure of Glucose


If a B glu and B glu connect one of them has to flip. 


Polysaccharide 

  1. Starch 

    1. Very long chains of A-Glu (1000>)

    2. Amylose - short chain 

    3. Amylopein - branch 

    4. Storage of energy for pants 

  2. Glycogen 

    1. Very long branched chains of A-Glu (1000>)

    2. Highly branched 

    3. Storage of energy in liver/muscle cells

  3. Chitin (CH2ON)

    1. Exoskeleton of insects 

    2. Makes up cell wall of fungi 

    3. Straight chain 

  4. Cellulose 

    1. Only made up of B-Glu 

    2. Makes up the cell wall for plants 

    3. Made up of straight chains 


What makes cells strong and rigid?

H bonds between cellulose molecules 

Microfibril: a group of cellulose molecules holding onto each other 

When many are stacked, they form the cell wall

Adaptive tissue: fat tissue 

Our body stores sugar as glucose and excess sugar is stored as body fat 


Proteins 

All functions in the body are carried out by proteins

Protein could be used as energy once all other sources run out, this state is called starvation

Components 

20 different types of amino acids 

  1. Nonpolar (hydrophobic)

  2. Polar (hydrophilic) 

  3. Electrically charged (ionic) 

Examples:

Nonpolar: Methionine 

Polar: All polar amino have O or N at it’s end 

Except for Cysteine, helps for 3D structure of proteins 


The basic structure of an amino acid:



Elements found in all proteins 

  • Carbon 

  • Oxygen 

  • Nitrogen 

  • Hydrogen 

  • Sulfur

Structure level of proteins 


Primary structure 1°

  1. Tells the number of amino acids 

  2. Types of amino acids 

  3. Sequence of amino acids 


Secondary structure 2°

  1. Folding of the 1° structure using H-Bonds 

    1. α Helix (spiral)

  • Exp: collagen, holds cells together 

  1. β pleated sheets 

  • Exp: keratin, for hair and nails 


Fibrous Protein

Proteins that have up to the 2° structure and they are insoluble in water, nonpolar, hydrophobic 


Tertiary structure 3°

  1. Further folding and twisting of previous structures by using Intra molecular forces such as: 

  • H Bonds

  • LDF

  • Ionic bonds

  • Dip Dip

  • Disulfide bridges 

  1. Exp: hemoglobin or insulin 


Globalor proteins: 

They have 3° structure or higher, and they are soluble in water 


Quateunary structure 4°

  1. Found in proteins that have 2 or more polypeptide chains held together by intra-MF

  • Exp: 

    • Hemoglobin: 4 polypeptide 

    • Indulin: 2 polypeptide 


Denaturation

loss of protein structure leading to loss of functions 

Caused by:

  • pH 

  • Temperature 

  • Pressure 

  • Salt → have charged when dissolved in H2O, disrupts ionic bonds 

↑ maybe reversible or irreversible 


Structure of protein 

Defence → antibodies → protects from bacteria and viruses 

Enzymes → Alpha amylase → breaks down starch 

Structure → collagen → molecules have 2° fibers have 4° 

Communication → insulin (dec glucose) glucagon (inc glucose)

Storage → ferritin → stores iron 

Transport→ calcium pump → moves Ca^2+ across membrane

      HDL → lipids around body 

      Hemoglobin → transports O2 in blood 

Contractile proteins → myosin and actin → contract & move muscles 

Receptors → insulin receptor → detect hormones 


Nucleic Acid 


Central dogma: All life depends on DNA

DNA: 

  • deoxyribonucleic acid 

  • Double helix 

  • It has 2 strands with H-Bonds in the middle.


RNA: ribonucleic acid 

  • 1 strange with different types 

  • mRNA (message) - carries the info from the nucleus to the cytoplasm 

  • tRNA (transfer) - brings the correct amino acid during protein synthesis 

  • rRNA (ribosomal) - needed in structure for ribosomes 

call structure that builds proteins 

  • miRNA (micro) - regulates gene expression 


DNA → RNA → PROTEINS 


from DNA to RNA: Transcription                

from RNA to protein: Translation 


Transcription:

It happens in the nucleus 

Type of chemical remains the same but the structure changes 


Translation:

Happens in the cytoplasm 

Type of chemical changes and so does the structure 



Monomers of nucleic acids: nucleotides 

Made up of:

  • Nitrogenous base ↓H⁺ attached to C1

  • Pentose sugar      C5H10O5

  • Phosphate group Always attached to C5




Lipids 


Fats

  • Animal sources

  • Solid at room temp 

  • Saturated 

Oils

  • Plant source 

  • Liquid at room temp

  • Unsaturated 

Basic functions of lipids

  • Energy storage

  • Insulation 

  • Cell membranes (make new cells)

  • Communication for hormones 

  • Defence 


Triglycerides 

Used for energy storage

Made up of

  • 1 glycerol

  • 3 fatty acids 

    • Fatty: hydrocarbon 

    • Acid: carboxyl 


Structure 



Esterification: the process of creating an ester bond rxn between alcohol and fatty acid


Types of triglycerides 


Saturated triglycerides  

  • All three fatty acids must have single bonds ONLY 

Monounsaturated  

  • One and only one  

  • double bond must be present, causing one of the fatty acids to move downwards, allowing it to be liquid at room temp. Because it leaves space for it to move and become a liquid  

Polyunsaturated  

  • Has two or more double bonds present. It can be on the same fatty acid  

Vitamins

V. are special chemicals needed for proper metabolism  

Nonpolar are stored in adopost tissue 

Polar ones cannot be stored 

Retinol: V A1 alcohol nonpolar 

Retinal: V A aldehyde nonpolar 

VD: nonpolar cholesterol-based forms on skin 


Phospholipids 

Create the cell membranes. 

Made up of:

  • Glycerol 

  • 2 fatty acids

  • Phosphate group 


Steroids 

  • Creation of hormones 

  • Membrane stability (flexibility) 

  • Regulates fluidity 

    • More cholesterol more rigid 

Components

  • Cholesterol 

Cholesterol Rings 

Waxes

For defence 

Made up of:

  • Long chained alcohol 

  • Long chained fatty acid 

S:

Unit 3

Biomolecules (macromolecules)

  • Carbohydrates *

  • Lipids 

  • Proteins *

  • Nucleic Acids *


* Polymers: chemicals made up of many repeating units called monomers 

Dehydration RXN (condensation)

Short polymer with and H and monomer with OH connect to form a polymer with H2O

Hydrolysis RXN

Large polymer with H2O breaks into short polymer with and H and monomer with OH


Enzymes: proteins that allow rxns to take place

Hydrolytic enzymes: enzymes that use water to break down polymers 


Carbohydrates 

Empirical formula: CH2O 

Monomers of carbohydrates are called Monosaccharides. 

Functions:

  • Provide energy for all organisms 

  • Structure of plant fungi and bacteria 

  • Communication for cells 


Trioses (Сзнвоз) <br />Pentoses (С5Н10О5) <br />н <br />Н <br />GIyceraIdehyde <br />н—с—он <br />Dihydroxyacetone <br />сор,ччга тов , а. <br />н—с—он <br />н —он <br />н—с—он <br />н—с—он <br />н—с—он <br />о <br />н—с—он <br />но —с—н <br />н—с—он <br />но—с—н <br />н—с—он <br />н—с—он <br />Glucose <br />Ribose <br />н—с—он <br />Ribulose <br />Hexoses (С Н О ) <br />б 12 б <br />Н <br />н—с—он <br />НО —С— Н <br />н—с—он <br />н—с—он <br />Galactose <br />н—с—он <br />Fructose

Glucose 


Structure of Glucose


If a B glu and B glu connect one of them has to flip. 


Polysaccharide 

  1. Starch 

    1. Very long chains of A-Glu (1000>)

    2. Amylose - short chain 

    3. Amylopein - branch 

    4. Storage of energy for pants 

  2. Glycogen 

    1. Very long branched chains of A-Glu (1000>)

    2. Highly branched 

    3. Storage of energy in liver/muscle cells

  3. Chitin (CH2ON)

    1. Exoskeleton of insects 

    2. Makes up cell wall of fungi 

    3. Straight chain 

  4. Cellulose 

    1. Only made up of B-Glu 

    2. Makes up the cell wall for plants 

    3. Made up of straight chains 


What makes cells strong and rigid?

H bonds between cellulose molecules 

Microfibril: a group of cellulose molecules holding onto each other 

When many are stacked, they form the cell wall

Adaptive tissue: fat tissue 

Our body stores sugar as glucose and excess sugar is stored as body fat 


Proteins 

All functions in the body are carried out by proteins

Protein could be used as energy once all other sources run out, this state is called starvation

Components 

20 different types of amino acids 

  1. Nonpolar (hydrophobic)

  2. Polar (hydrophilic) 

  3. Electrically charged (ionic) 

Examples:

Nonpolar: Methionine 

Polar: All polar amino have O or N at it’s end 

Except for Cysteine, helps for 3D structure of proteins 


The basic structure of an amino acid:



Elements found in all proteins 

  • Carbon 

  • Oxygen 

  • Nitrogen 

  • Hydrogen 

  • Sulfur

Structure level of proteins 


Primary structure 1°

  1. Tells the number of amino acids 

  2. Types of amino acids 

  3. Sequence of amino acids 


Secondary structure 2°

  1. Folding of the 1° structure using H-Bonds 

    1. α Helix (spiral)

  • Exp: collagen, holds cells together 

  1. β pleated sheets 

  • Exp: keratin, for hair and nails 


Fibrous Protein

Proteins that have up to the 2° structure and they are insoluble in water, nonpolar, hydrophobic 


Tertiary structure 3°

  1. Further folding and twisting of previous structures by using Intra molecular forces such as: 

  • H Bonds

  • LDF

  • Ionic bonds

  • Dip Dip

  • Disulfide bridges 

  1. Exp: hemoglobin or insulin 


Globalor proteins: 

They have 3° structure or higher, and they are soluble in water 


Quateunary structure 4°

  1. Found in proteins that have 2 or more polypeptide chains held together by intra-MF

  • Exp: 

    • Hemoglobin: 4 polypeptide 

    • Indulin: 2 polypeptide 


Denaturation

loss of protein structure leading to loss of functions 

Caused by:

  • pH 

  • Temperature 

  • Pressure 

  • Salt → have charged when dissolved in H2O, disrupts ionic bonds 

↑ maybe reversible or irreversible 


Structure of protein 

Defence → antibodies → protects from bacteria and viruses 

Enzymes → Alpha amylase → breaks down starch 

Structure → collagen → molecules have 2° fibers have 4° 

Communication → insulin (dec glucose) glucagon (inc glucose)

Storage → ferritin → stores iron 

Transport→ calcium pump → moves Ca^2+ across membrane

      HDL → lipids around body 

      Hemoglobin → transports O2 in blood 

Contractile proteins → myosin and actin → contract & move muscles 

Receptors → insulin receptor → detect hormones 


Nucleic Acid 


Central dogma: All life depends on DNA

DNA: 

  • deoxyribonucleic acid 

  • Double helix 

  • It has 2 strands with H-Bonds in the middle.


RNA: ribonucleic acid 

  • 1 strange with different types 

  • mRNA (message) - carries the info from the nucleus to the cytoplasm 

  • tRNA (transfer) - brings the correct amino acid during protein synthesis 

  • rRNA (ribosomal) - needed in structure for ribosomes 

call structure that builds proteins 

  • miRNA (micro) - regulates gene expression 


DNA → RNA → PROTEINS 


from DNA to RNA: Transcription                

from RNA to protein: Translation 


Transcription:

It happens in the nucleus 

Type of chemical remains the same but the structure changes 


Translation:

Happens in the cytoplasm 

Type of chemical changes and so does the structure 



Monomers of nucleic acids: nucleotides 

Made up of:

  • Nitrogenous base ↓H⁺ attached to C1

  • Pentose sugar      C5H10O5

  • Phosphate group Always attached to C5




Lipids 


Fats

  • Animal sources

  • Solid at room temp 

  • Saturated 

Oils

  • Plant source 

  • Liquid at room temp

  • Unsaturated 

Basic functions of lipids

  • Energy storage

  • Insulation 

  • Cell membranes (make new cells)

  • Communication for hormones 

  • Defence 


Triglycerides 

Used for energy storage

Made up of

  • 1 glycerol

  • 3 fatty acids 

    • Fatty: hydrocarbon 

    • Acid: carboxyl 


Structure 



Esterification: the process of creating an ester bond rxn between alcohol and fatty acid


Types of triglycerides 


Saturated triglycerides  

  • All three fatty acids must have single bonds ONLY 

Monounsaturated  

  • One and only one  

  • double bond must be present, causing one of the fatty acids to move downwards, allowing it to be liquid at room temp. Because it leaves space for it to move and become a liquid  

Polyunsaturated  

  • Has two or more double bonds present. It can be on the same fatty acid  

Vitamins

V. are special chemicals needed for proper metabolism  

Nonpolar are stored in adopost tissue 

Polar ones cannot be stored 

Retinol: V A1 alcohol nonpolar 

Retinal: V A aldehyde nonpolar 

VD: nonpolar cholesterol-based forms on skin 


Phospholipids 

Create the cell membranes. 

Made up of:

  • Glycerol 

  • 2 fatty acids

  • Phosphate group 


Steroids 

  • Creation of hormones 

  • Membrane stability (flexibility) 

  • Regulates fluidity 

    • More cholesterol more rigid 

Components

  • Cholesterol 

Cholesterol Rings 

Waxes

For defence 

Made up of:

  • Long chained alcohol 

  • Long chained fatty acid 

robot