Unit 4.3 Intermolecular Forces & Metallic Bonding

4.3.1 Types of Intermolecular Forces

Intermolecular Forces (IMF)

  • Forces of attraction between molecules that hold them together

  • 3 main types:

    • Dispersion forces

    • Dipole-dipole

    • Hydrogen bonding

Dispersion Forces

  • Electrons in constant motion in an atom

  • Electron cloud dispersion can be asymmetrical at any given point in time, creating an instantaneous dipole

  • Attraction between partial negative and positive instantaneous dipoles form a dispersion force

  • Strength of dispersion forces increases with difference in electronegativity and electron cloud movement

Key Facts about Dispersion Forces

  • Present in all atoms and molecules

  • Weakest IMF

  • Strength depends on the number of electrons

  • More electrons = stronger temporary/instantaneous dipole

  • Exception: dispersion forces can be stronger than dipole-dipole if the atom is large enough

  • Molecules composed of only C and H can only have dispersion forces

Dipole-dipole Attractions

  • Attractive force between molecules with permanent dipoles

  • Stronger than dispersion forces

  • Only for small molecules with the same number of electrons

Hydrogen Bonding

  • Strongest IMF

  • Special type of dipole-dipole attraction

  • Conditions for hydrogen bonding to occur:

    • A species with a very electronegative atom (O, N, or F) that has a lone pair of electrons

    • A hydrogen attached to the O, N, or F

  • Hydrogen becomes partially positively charged and can form a bond with the lone pair on another molecule

Hydrogen Bond Donors and Acceptors

  • Every hydrogen bond has two components

  • A molecule can be both the donor and acceptor, able to hydrogen bond with itself

  • Hydrogen bond acceptor only requires an available lone pair, not a hydrogen atom

Hydrogen Bonding in Water and Ammonia

  • Water can form a maximum of two hydrogen bonds per molecule

  • Ammonia can form a maximum of one hydrogen bond per molecule

  • Number of hydrogen bonds possible is restricted by the number of

4.3.2 Deducing Intermolecular Forces

  • The structure and chemical formular of the molecules will indicate the types of intermolecular forces present

    • Structure and Symmetry ā†’ Is molecule polar or not? (See Section 4.2.4)

    • Chemical Formula ā†’ How electronegative are the elements in the molecule?

      • Helps to tell you polar bonds

      • Also tells you if hydrogen bonds are possible when there is N, O, or F

4.3.3 Properties of Covalent Compounds

  • Types of intermolecular forces indicate physical properties of molecular covalent compounds (melting/boiling point, solubility, and conductivity)

Melting and Boiling Point

  • Changing the state means overcoming the intermolecular forces

  • The stronger the forces, the more energy is needed to break the attraction between molecules

  • Substances with low melting and boiling points = ā€œvolatileā€

  • As the intermolecular forces increase in strength:

    • The size of the molecule increases

    • The polarity of the molecule increases

Solubility

  • ā€œLike dissolves likeā€ = non-polar substances dissolve in non-polar solvents while polar substances dissolve in polar solvents

  • However, as the size of a covalent molecule increases in size at a certain point, their solubility can decrease

    • This is because the polar part of the molecule remains the smaller part of the overall structure (In other words, the ratio of polar to non-polar decreases)

    • Ex. alcohols (ethanol is soluble yet hexanol isnā€™t)

  • Giant Covalent substances donā€™t dissolve in any solvents

    • This is because the energy required to overcome their strong covalent bonds from the lattice structure is too great

Conductivity

  • Usually, covalent substances canā€™t conduct electricity in solid or liquid states since they donā€™t have any free-moving charged particles

  • Only in some cases, polar covalent molecules can ionize and conduct electricity

  • Other exceptions are Giant Covalent Structures and they can conduct electricity because they have delocalized electrons (the free-moving charged particles required for conductivity) (See Section 4.2.5)

4.3.4 Metallic Bonding

Metallic Bonding

  • Metal atoms tend to pack together in lattice structures

    • This causes their outer electrons to be able to move freely throughout the entire structure = ā€œdelocalizes electronsā€

  • Once their valence electrons are delocalized, the metals gain a positive charge, which repel each other, keeping the entire structure neatly arranged in a lattice

  • Metallic Bonding involves strong electrostatic forces of attraction between the metal centers and delocalized electrons

Properties of Metals

  • Metals are malleable

    • This is because when a force is applied, the metal layers can slide over each other (the attractive forces between the metal ions and the delocalized electrons act in all directions)

    • So, when the layers slide, the metallic bonds can re-form in a new shape and the lattice is not broken

  • Metallic compounds are strong and hard

  • Due to the strong attraction between the metal cations suspended in a sea of delocalized electrons

  • This also causes metals to have a high melting and boiling point

Conductivity

  • Unlike non-metals, metals are able to conduct electricity when in the solid or liquid state

    • Because in both states, they have mobile electrons that can move around and conduct electricity (remember: electric current = flow of electrons)

Strength of Metallic Bonds

Not all metallic bonds have equal strength; there are several factors that affect it:

  1. Charge on the Metal Ion

The greater the charge on the metal ion,

ā†’ the greater number of electrons in the sea of delocalized electrons

ā†’ the greater the charge difference between ions and electrons

ā†’ the greater the electrostatic attraction

ā†’ the stronger the metallic bond

  1. Radius of the Metal Ion

Metal ions with a smaller ionic radii exert a greater attraction on the sea of delocalized electrons

ā†’ requires more energy to break

ā†’ stronger metallic bond

4.3.5 Trends in Melting Points of Metals

  • An increase in the strength of electrostatic attraction is caused by:

    • Increasing the # of delocalized electrons in each metal atom

    • Increasing the positive charges on the metal centers in the lattice structure

    • Decreasing the size of the metal ions

Melting Points of Metals Across a Period

  • Ex. Compare the electron configuration of sodium, magnesium, and aluminum and observe the # of valence electrons (do they increase or decrease?)

Na = 1s22s22p63s1

Mg = 1s22s22p63s2

AlĀ  = 1s22s22p63s23p1

  • Since aluminum ions are smaller in radius than magnesium or sodium ions

    • So considering that aluminum has the most electrons AND has the smallest radius, it has a stronger metallic bonding ā†’ higher melting point

  • So as you go across a period, the metallic bonding is stronger and the melting points increase

Melting Points of Metals Down a Group

  • As you go down a periodic group, the size of the metal cations increase, thus decreasing the attraction between the negative valence electrons and the positive metallic lattice, so the melting point decreases

4.3.6 Alloys & their Properties

  • Alloys = mixtures of metals (the metals are mixed together physically but are not chemically combined)

    • Alloys can also be a mixture of metals and non-metals (ex. with carbon)

  • The different metal ion mix is spread evenly throughout the lattice (not clumped together) and are bound together by their delocalized electrons

  • Alloys are able to form due to the fact that metallic bonds are non-directional by nature

So why are Alloys made?

  • They have distinct and desirable properties since the cations are structured differently in the lattice

Alloy Properties

  • Greater strength,

  • Harder

    • Since the mixture of atoms in an alloy are different sizes, this distorts the regular arrangement of cations

    • So the layers in a lattice structure have a more difficult time sliding over each other, causing the alloy to be harder than a pure metal

  • Higher resistance to corrosion/extreme temperatures

Common Alloys & their Uses

Alloy

Elements

Properties

Uses

Brass

copper + zinc

strong

resistant to corrosion

door handles, hinges, metal instruments

Steel

iron + carbon + others (chromium, vanadium, and molybdenum, etc.)

very strong

construction, bridges, cars

Solder

lead + tin

low melting point

joining metals in electrical circuits and in jewelry

Bronze

copper + tin

hard

strong

resistant to corrosion

medals, sculptures, ship fittings

robot