Note
0.0(0)

Chapter 1 matsh

  1. Integers (Positive & Negative Numbers)
    Addition Rules:

  • Same signs: Add the numbers and keep the sign
    Example: -4 + (-3) = -7
    +5 + (+6) = +11

  • Different signs: Subtract smaller from bigger, take sign of the bigger number
    Example: -6 + 10 = 4
    8 + (-12) = -4
    Subtraction Rules:

  • Subtracting a negative = adding: -2 - (-5) = -2 + 5 = 3

  • Subtracting a positive is normal: 6 - 3 = 3; -4 - 2 = -6
    Tip: a - (-b) = a + b

  1. Multiplying & Dividing Integers
    Same signs = Positive
    Different signs = Negative
    Examples:
    -4 × -2 = +8
    6 ÷ -3 = -2

  2. Square & Cube Roots
    Square Root (\sqrt):

  • Example: \sqrt{64} = 8 because 8 × 8 = 64

  • \sqrt{111} ≈ 10.53 → Nearest whole number = 11
    Cube Root (\sqrt[3]):

  • Example: \sqrt[3]{27} = 3 because 3 × 3 × 3 = 27

  • \sqrt[3]{100} ≈ 4.64 → Nearest whole number = 5

  1. Rounding to Nearest Whole Number (for Roots)
    Check the first digit after the decimal:

  • 5 or more → round up

  • Less than 5 → round down
    Examples:
    \sqrt{111} ≈ 10.53 → 11
    \sqrt[3]{825} ≈ 9.37 → 9

  1. Indices / Powers
    Positive powers: a^n = a × a × … (n times)
    Example: 2^3 = 8
    Zero power: a^0 = 1 (as long as a ≠ 0)
    Example: 5^0 = 1
    Negative powers: a^{-n} = 1 / a^n
    Example: 3^{-2} = 1/9

  2. Working with Indices (Index Laws)

  3. a^m × a^n = a^{m+n}
    Example: 2^3 × 2^2 = 2^5 = 32

  4. a^m ÷ a^n = a^{m−n}
    Example: 5^4 ÷ 5^2 = 5^2 = 25

  5. (a^m)^n = a^{m×n}
    Example: (3^2)^3 = 3^6 = 729

  6. a^{-n} = 1 / a^n

  7. a^0 = 1

Note
0.0(0)