SP

Area Under y = x^2 on [0,1] via First-Principles (Riemann-Sum) Integration

Problem Statement

  • Goal: Compute the exact area of the region
    • Under the parabola y = x^2
    • Above the x-axis
    • Bounded horizontally by the closed interval [0,1].
  • Key observation: The region is not a simple geometric shape (e.g.
    triangle, rectangle, trapezoid), so classical area formulas do not apply; we must integrate.

First-Principles (Riemann-Sum) Definition of the Definite Integral

  • Foundational formula used:
    • \displaystyle \int{a}^{b} f(x)\,dx = \lim{n\to\infty} \sum{i=1}^{n} f(xi)\,\Delta x
  • Interpretation:
    • Subdivide [a,b] into n equal subintervals.
    • On each subinterval, erect a rectangle whose height is determined by a sample point x_i.
    • Add the rectangle areas f(x_i)\,\Delta x and let n \to \infty to make width \Delta x go to 0.
  • Geometric connection: More rectangles ⇒ better approximation⇒ limit gives exact area.

Identify the Required Ingredients

  1. Function: f(x)=x^2 (from “under the parabola”).
  2. Interval endpoints:
    • Left a=0 (given),
    • Right b=1 (given).
  3. Width of each subinterval/rectangle (common width):
    \displaystyle \Delta x = \frac{b-a}{n}=\frac{1-0}{n}=\frac{1}{n}.
  4. Choice of sample point xi (right-hand endpoints referenced in the transcript): \displaystyle xi = a + i\,\Delta x = 0 + i\left(\frac{1}{n}\right)=\frac{i}{n}.

Build the Riemann Sum

  • Substitute each piece into the first-principles formula:
    \displaystyle \int{0}^{1} x^2\,dx = \lim{n\to\infty} \sum{i=1}^{n} f(xi)\,\Delta x \;=\; \lim{n\to\infty} \sum{i=1}^{n} \bigl(\,(x_i)^2\bigr)\,\Delta x.
  • Replace xi and \Delta x with their explicit expressions: xi = \frac{i}{n}, \quad \Delta x = \frac{1}{n}.
  • Obtain:
    \displaystyle \lim{n\to\infty} \sum{i=1}^{n} \Bigl(\frac{i}{n}\Bigr)^2 \frac{1}{n}
    = \lim{n\to\infty} \sum{i=1}^{n} \frac{i^2}{n^3}.

Factor Out n-Only Quantities

  • Within the summation, i is the variable; n behaves as a constant.
  • Extract 1/n^3:
    \displaystyle \lim{n\to\infty} \frac{1}{n^3} \sum{i=1}^{n} i^2.

Closed-Form Formula for \sum_{i=1}^{n} i^2

  • Standard result (memorize!):
    \displaystyle \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
    (Same as transcript’s algebraically equivalent \tfrac{n(2n^2+3n+1)}{6}).

Substitute & Simplify

  • Plug into the working expression:
    \displaystyle \int{0}^{1} x^2\,dx = \lim{n\to\infty} \frac{1}{n^3} \cdot \frac{n(2n^2+3n+1)}{6}.
  • Multiply numerators / denominators:
    = \lim_{n\to\infty} \frac{2n^2 + 3n + 1}{6n^2}.
  • Degree analysis (highest power n^2 top & bottom):
    • Leading coefficients: numerator 2, denominator 6.
    • Therefore, as n \to \infty,
      \displaystyle \lim_{n\to\infty} \frac{2n^2 + 3n +1}{6n^2} = \frac{2}{6} = \frac{1}{3}.

Final Answer & Interpretation

  • Exact area under y=x^2 from 0 to 1:
    \boxed{\displaystyle \frac{1}{3}}.
  • Checks/intuition:
    • For y = x^2 over [0,1], the maximum height is 1, so the area must be < 1 \times 1 = 1, making 1/3 plausible.

Connections & Broader Context

  • Confirms result obtainable by the Fundamental Theorem of Calculus:
    \int{0}^{1} x^2\,dx = \Bigl[\frac{x^3}{3}\Bigr]{0}^{1} = \frac{1}{3}-0 = \frac{1}{3}.
    First-principles method matches more advanced rule.
  • Demonstrates the bridge between limit-based (Riemann) definition and antiderivative technique.
  • Highlights the usefulness of summation formulas in calculus.

Conceptual & Ethical Notes

  • Ethically, showing the derivation from first principles avoids reliance on “black-box” rules and promotes deeper comprehension.
  • Pedagogical payoff: reinforces
    • Summation manipulation skills,
    • Comfort with limits,
    • Understanding why integrals equal areas.

Practical Tips & Pitfalls When Using First Principles

  • Always identify f(x), a, b first; the rest follows mechanically.
  • Keep track of constants vs. index-dependent terms inside sums.
  • Memorize or have quick access to common sum formulas (e.g., \sum i, \sum i^2, \sum i^3).
  • In limit evaluation of rational functions, compare highest powers to determine limit quickly.
  • Remember alternative sample points (left endpoint, midpoints) produce same limit for continuous functions but can lead to different intermediate algebra.

Numerical & Formula Summary

  • Width of rectangles: \Delta x = \dfrac{1}{n}
  • Right-endpoint sample: x_i = \dfrac{i}{n}
  • Area Riemann sum: \sum_{i=1}^{n} \dfrac{i^2}{n^3}
  • Sum of squares formula: \sum_{i=1}^{n} i^2 = \dfrac{n(n+1)(2n+1)}{6}
  • Final limit: \displaystyle \lim_{n\to\infty} \dfrac{2}{6}=\dfrac{1}{3}