Area Under y = x^2 on [0,1] via First-Principles (Riemann-Sum) Integration
Problem Statement
- Goal: Compute the exact area of the region
- Under the parabola y = x^2
- Above the x-axis
- Bounded horizontally by the closed interval [0,1].
- Key observation: The region is not a simple geometric shape (e.g.
triangle, rectangle, trapezoid), so classical area formulas do not apply; we must integrate.
First-Principles (Riemann-Sum) Definition of the Definite Integral
- Foundational formula used:
- \displaystyle \int{a}^{b} f(x)\,dx = \lim{n\to\infty} \sum{i=1}^{n} f(xi)\,\Delta x
- Interpretation:
- Subdivide [a,b] into n equal subintervals.
- On each subinterval, erect a rectangle whose height is determined by a sample point x_i.
- Add the rectangle areas f(x_i)\,\Delta x and let n \to \infty to make width \Delta x go to 0.
- Geometric connection: More rectangles ⇒ better approximation⇒ limit gives exact area.
Identify the Required Ingredients
- Function: f(x)=x^2 (from “under the parabola”).
- Interval endpoints:
- Left a=0 (given),
- Right b=1 (given).
- Width of each subinterval/rectangle (common width):
\displaystyle \Delta x = \frac{b-a}{n}=\frac{1-0}{n}=\frac{1}{n}. - Choice of sample point xi (right-hand endpoints referenced in the transcript):
\displaystyle xi = a + i\,\Delta x = 0 + i\left(\frac{1}{n}\right)=\frac{i}{n}.
Build the Riemann Sum
- Substitute each piece into the first-principles formula:
\displaystyle \int{0}^{1} x^2\,dx = \lim{n\to\infty} \sum{i=1}^{n} f(xi)\,\Delta x \;=\; \lim{n\to\infty} \sum{i=1}^{n} \bigl(\,(x_i)^2\bigr)\,\Delta x. - Replace xi and \Delta x with their explicit expressions:
xi = \frac{i}{n}, \quad \Delta x = \frac{1}{n}.
- Obtain:
\displaystyle \lim{n\to\infty} \sum{i=1}^{n} \Bigl(\frac{i}{n}\Bigr)^2 \frac{1}{n}
= \lim{n\to\infty} \sum{i=1}^{n} \frac{i^2}{n^3}.
Factor Out n-Only Quantities
- Within the summation, i is the variable; n behaves as a constant.
- Extract 1/n^3:
\displaystyle \lim{n\to\infty} \frac{1}{n^3} \sum{i=1}^{n} i^2.
- Standard result (memorize!):
\displaystyle \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
(Same as transcript’s algebraically equivalent \tfrac{n(2n^2+3n+1)}{6}).
Substitute & Simplify
- Plug into the working expression:
\displaystyle \int{0}^{1} x^2\,dx = \lim{n\to\infty} \frac{1}{n^3} \cdot \frac{n(2n^2+3n+1)}{6}. - Multiply numerators / denominators:
= \lim_{n\to\infty} \frac{2n^2 + 3n + 1}{6n^2}. - Degree analysis (highest power n^2 top & bottom):
- Leading coefficients: numerator 2, denominator 6.
- Therefore, as n \to \infty,
\displaystyle \lim_{n\to\infty} \frac{2n^2 + 3n +1}{6n^2} = \frac{2}{6} = \frac{1}{3}.
Final Answer & Interpretation
- Exact area under y=x^2 from 0 to 1:
\boxed{\displaystyle \frac{1}{3}}. - Checks/intuition:
- For y = x^2 over [0,1], the maximum height is 1, so the area must be < 1 \times 1 = 1, making 1/3 plausible.
Connections & Broader Context
- Confirms result obtainable by the Fundamental Theorem of Calculus:
\int{0}^{1} x^2\,dx = \Bigl[\frac{x^3}{3}\Bigr]{0}^{1} = \frac{1}{3}-0 = \frac{1}{3}.
First-principles method matches more advanced rule. - Demonstrates the bridge between limit-based (Riemann) definition and antiderivative technique.
- Highlights the usefulness of summation formulas in calculus.
Conceptual & Ethical Notes
- Ethically, showing the derivation from first principles avoids reliance on “black-box” rules and promotes deeper comprehension.
- Pedagogical payoff: reinforces
- Summation manipulation skills,
- Comfort with limits,
- Understanding why integrals equal areas.
Practical Tips & Pitfalls When Using First Principles
- Always identify f(x), a, b first; the rest follows mechanically.
- Keep track of constants vs. index-dependent terms inside sums.
- Memorize or have quick access to common sum formulas (e.g., \sum i, \sum i^2, \sum i^3).
- In limit evaluation of rational functions, compare highest powers to determine limit quickly.
- Remember alternative sample points (left endpoint, midpoints) produce same limit for continuous functions but can lead to different intermediate algebra.
- Width of rectangles: \Delta x = \dfrac{1}{n}
- Right-endpoint sample: x_i = \dfrac{i}{n}
- Area Riemann sum: \sum_{i=1}^{n} \dfrac{i^2}{n^3}
- Sum of squares formula: \sum_{i=1}^{n} i^2 = \dfrac{n(n+1)(2n+1)}{6}
- Final limit: \displaystyle \lim_{n\to\infty} \dfrac{2}{6}=\dfrac{1}{3}