TT

WS20-21- Antiderivatives and Riemann Sum

Page 1: Anti-Derivatives and Indefinite Integrals

  • Objective: Find general anti-derivatives (indefinite integrals) of given functions.

    • (a) f(x) = x³ − 5x² + 3x − 1

      • F(x) = (1/4)x⁴ - (5/3)x³ + (3/2)x² - x + C

    • (b) f(x) = sin(x) − x²

      • F(x) = -cos(x) - (1/3)x³ + C

    • (c) f(x) = e^(3x) + sec²(x)

      • F(x) = (1/3)e^(3x) + tan(x) + C

    • (d) f(x) = cos(3x) + sin(5x)

      • F(x) = (1/3)sin(3x) - (1/5)cos(5x) + C

    • (e) f(x) = 3/(1 + 4x²)

      • F(x) = (3/4)arctan(2x) + C

    • (f) f(x) = √(4x − 7)

      • Use substitution, let u = 4x − 7, then F(x) = (2/3)(4x − 7)^(3/2) + C

Page 2: Particular Anti-Derivatives

  • Objective: Find particular anti-derivatives satisfying given conditions.

    • (a) f(x) = 8x + 9, F(1) = 7

      • F(x) = 4x² + 9x + C; Solve for C

    • (b) f(x) = cos(x), F(0) = 3

      • F(x) = sin(x) + C; Solve for C

    • (c) f(x) = e^(4x) + 5, F(0) = 4

      • F(x) = (1/4)e^(4x) + 5x + C; Solve for C

    • (d) f(x) = 3√x, F(1) = 5

      • F(x) = 2x^(3/2) + C; Solve for C

  • Sums to calculate:

    • (a) Σ from i=0 to 7 (2i + 1)

    • (b) Σ from i=2 to 5 (4i²)

    • (c) Σ from i=1 to 6 (2i)

Page 3: Estimating Net Area

  • Objective: Estimate areas under curves using rectangles.

    • (5) For y = x² over [1, 5]:

      • Use 4 rectangles.

      • Heights determined by f(1), f(2), f(3), f(4).

      • Check under or overestimate.

    • (6) For y = 1/x over [1, 4]:

      • Use 6 rectangles.

      • Heights determined by function value at right endpoints.

      • Check under or overestimate.

Page 4: Riemann Sums and Definite Integrals

  • (7) Convert definite integral ∫ from 0 to 2 (x²)dx into Riemann sum:

    • Limit of the sum: lim n→∞ Σ from i=1 to n (i/n)² * (2/n)

    • Use formula Σ from i=1 to n i² = n(n + 1)(2n + 1)/6

  • (8) Write limits as definite integrals:

    • (a) lim n→∞ Σ from i=1 to n (e^(i/n))(1/n)

    • (b) lim n→∞ Σ from i=1 to n (i² + 3n) i/n³

Page 5: Geometric Evaluation of Definite Integrals

  • (9) Use geometry for definite integrals:

    • (a) ∫ from 0 to 5 (√(25 − x²))dx

      • Represents area of a quarter circle

      • Answer: (1/4)π(5)² = (25/4)π

    • (b) ∫ from 1 to 5 (4 − 2x)dx

      • Area under a linear function.

  • (10) Given integral values:

    • ∫ from 0 to 1 f(x)dx = 2

    • ∫ from 0 to 2 f(x)dx = 5

    • ∫ from 2 to 3 f(x)dx = 4

    • Find:

      • (a) ∫ from 0 to 3 f(x)dx

      • (b) ∫ from 1 to 3 f(x)dx