Of course, binary numbers are rarely used in real life.
Therefore, programmers must be able to go back and forth between the binary numbers we use in computing and the decimal numbers that we use in everyday life.
The key is to remember that the different binary digits represent different powers of 2.
For example, let's use the binary number 1101.
We need to find the powers of 2 that add up to the given decimal number. Start by finding the largest power of 2 that is less than the number.
Subtract that number from the original, and repeat until you're down to 0.
Try the example of the decimal number 200.
Images displayed on the screen are converted into binary formats and then processed by a computer displayed on our screen.
Digital images: are a collection of pixels. where each pixel consists of binary numbers.
If we say that one is black (or on) and o is white (or off), then a simple black and white picture can be created using binary Draw a grid and color the squares (1-black and 0-white) to create the picture
However, before creating the grid, the site of the grid needs to be known.
Images: are not often just black and white.
To represent colors computers also use binary numbers.
Color: is based on light.
Any color can be created using red, green and blue light.
The maximum value for any color in decimal 255, which is repte sented by 11111111 in binary.
The minimum number is 0.
\
\
\