Polyprotic Acids and Mixtures of Acids Notes

Polyprotic Acids and Mixtures of Acids

Acid, Base, and Ampholyte Behavior

  • Ampholytes (Amphoteric Compounds): Substances that can act as both acids and bases.

  • Examples: "Acidic salts" of polybasic acids such as NaHS, NaH2PO4, Na2HPO4, and NaHCO3.

  • Reactions:

  • Acidic behavior: H3O^+ + S^{2-} \rightleftharpoons HS^- + H2O \rightleftharpoons H_2S + OH^-

  • Acidic behavior: H3O^+ + HPO4^{2-} \rightleftharpoons H2PO4^- + H2O \rightleftharpoons H3PO_4 + OH^-

  • Acidic behavior: H3O^+ + PO4^{3-} \rightleftharpoons HPO4^{2-} + H2O \rightleftharpoons H2PO4^- + OH^-

  • Acidic behavior: H3O^+ + CO3^{2-} \rightleftharpoons HCO3^- + H2O \rightleftharpoons H2CO3 + OH^-

  • The actual [H+] and pH of a solution is determined by considering all equilibria involving H+ ions.

pH Calculation of NaH2PO4 Solution

  • Problem: Determine the pH of a 0.100 M NaH2PO4 solution.

  • Given: For H3PO4:

    • H3PO4(aq) \rightleftharpoons H^+(aq) + H2PO4^-(aq) K_{a1} = 7.5 \times 10^{-3}

    • H2PO4^-(aq) \rightleftharpoons H^+(aq) + HPO4^{2-}(aq) K{a2} = 6.2 \times 10^{-8}

    • HPO4^{2-}(aq) \rightleftharpoons H^+(aq) + PO4^{3-}(aq) K_{a3} = 1.0 \times 10^{-12}

  • Hydrolysis: Two possibilities:

    • Acidic hydrolysis (ionization):

      • NaH2PO4(aq) \rightarrow Na^+(aq) + H2PO4^-(aq)

      • H2PO4^-(aq) \rightleftharpoons HPO_4^{2-}(aq) + H^+(aq)

      • K{h,1} = K{a,2} = \frac{[HPO4^{2-}][H^+]}{[H2PO_4^-]} = 6.2 \times 10^{-8}

    • Base hydrolysis:

      • H2PO4^-(aq) + H2O \rightleftharpoons H3PO_4(aq) + OH^-(aq)

      • K{h,2} = \frac{[H3PO4][OH^-]}{[H2PO4^-]} = \frac{Kw}{K_{a,1}} = \frac{1.0 \times 10^{-14}}{7.5 \times 10^{-3}} = 1.3 \times 10^{-12}

  • Water Dissociation Equilibrium:

    • H_2O \rightleftharpoons H^+(aq) + OH^-(aq)

    • K_w = [H^+][OH^-] = 10^{-14}

  • Since K{h,1} = 6.2 \times 10^{-8} and K{h,2} = 1.3 \times 10^{-12}, neither hydrolysis reaction proceeds appreciably. Thus, the formal concentration of [H2PO4^-] remains approximately 0.100 M.

  • The first hydrolysis reaction proceeds better than the second, indicating the solution will be acidic.

Solving for [H+]

  • Actual calculation:

    • [H^+] = [H^+]{from reactions (1 \& 3)} - [H^+]{used in reaction (2)}

    • [H^+] = \frac{K{a,2}[H2PO4^-]}{[H^+]} + \frac{Kw}{[H^+]} - \frac{[H^+][H2PO4^-]}{K_{a,1}}

    • Reorganization:

      • [H^+] = [HPO4^{2-}] + [OH^-] - [H3PO_4]

    • [H^+] + \frac{[H^+]c}{K{a,1}} = \frac{1}{[H^+]}(K{a,2} \cdot c + K_w)

    • [H^+]^2 = \frac{K{a,2} \cdot c + Kw}{1 + c/K_{a,1}}

    • [H^+]^2 = \frac{K{a,1}(K{a,2} \cdot c + Kw)}{K{a,1} + c}

pH Calculation

  • pH = \frac{1}{2}(pK{a,1} + pK{a,2}) + \frac{1}{2} \log \frac{K{a,1} + c}{c + Kw/K_{a,2}}

  • Explicit Calculation:

    • pH = \frac{1}{2}(2.12 + 7.21) + \frac{1}{2} \log \frac{7.5 \times 10^{-3} + 10^{-1}}{10^{-1} + 10^{-14}/6.8 \times 10^{-8}} = 4.66 + 0.01 = 4.67

Simplified Relation for pH Calculation

  • Conditions:

    • K_{a1} < c

    • Kw/K{a2} < c

  • pH = \frac{1}{2}(pK{a,1} + pK{a,2})

  • From pH = \frac{1}{2}(pK{a1} + pK{a2}) = 4.66

  • In general, for ampholyte solutions, pH = \frac{1}{2}(pKa + pKa')

Titration of Weak Polyprotic Acid with Strong Base

  • Titration Curve Properties:

    • In each buffer zone: pH = pK_a + \log \frac{[corresponding Base]}{[corresponding Acid]}

    • Halfway the buffer zone, where [corresponding Base] = [corresponding Acid], thus pH = pK_a

    • pH-jump at each stoichiometric point (if successive acid constants differ sufficiently).

    • At the stoichiometric point between two buffer zones, an ampholyte is present, and the pH is approximated by pH = \frac{1}{2}(pKa + pKa')

Application: Titration Curve of H3PO4 with NaOH

  • Titration of 40 mL 0.01 M H3PO4 with 0.05 M NaOH.

  • Given: pK{a1} = 2.12, pK{a2} = 7.20, pK_{a3} = 12.00

  • Steps:

    1. 0 to 1 stoichiometric amount of NaOH:

      • Reaction: H3PO4(aq) + OH^-(aq) \rightarrow H2PO4^-(aq) + H_2O

      • Buffer mixture: H3PO4 / H2PO4-

      • At 0.5 stoichiometric amounts: [H3PO4] = [H2PO4^-] and pH \approx pK_{a,1} = 2.12

    2. 1 to 2 stoichiometric amount of NaOH:

      • Reaction: H2PO4^-(aq) + OH^-(aq) \rightarrow HPO4^{2-}(aq) + H2O

      • Buffer mixture: H2PO4- / HPO42-

      • At 1.5 stoichiometric amounts: [H2PO4^-] = [HPO4^{2-}] and pH \approx pK{a,2} = 7.20

    3. 2 to 3 stoichiometric amount of NaOH:

      • Reaction: HPO4^{2-}(aq) + OH^-(aq) \rightarrow PO4^{3-}(aq) + H_2O

      • Buffer mixture: HPO42- / PO43-

      • At 2.5 stoichiometric amounts: [HPO4^{2-}] = [PO4^{3-}] and pH \approx pK_{a,3} = 12.00

    4. At the 1st stoichiometric point:

      • H2PO4- is present (ampholyte).

      • pH = \frac{1}{2}(pK{a1} + pK{a2})

    5. At the 2nd stoichiometric point:

      • HPO42- is present (ampholyte).

      • pH = \frac{1}{2}(pK{a2} + pK{a3})

pH of Mixtures of Acids and Bases

1. Solutions of Two Strong Acids (or Bases)
  • Since both acids (or bases) are fully dissociated:

    • Mixture of 2 strong acids: [H^+] = [H^+]{acid,1} + [H^+]{acid,2}

    • Mixture of 2 strong bases: [OH^-] = [OH^-]{base,1} + [OH^-]{base,2}

  • Example: 0.010 mol HCl and 0.020 mol HNO3 in 500 mL water.

    • [H^+]_{HCl} = \frac{0.01 mol}{0.5 L} = 0.020 M

    • [H^+]{HNO3} = \frac{0.02 mol}{0.5 L} = 0.040 M

    • [H^+] = 0.020 M + 0.040 M = 0.060 M

    • pH = -\log[H^+] = 1.22

    • Actual concentrations: [Cl^-] = 0.020 M, [NO_3^-] = 0.040 M, [H^+] = 0.060 M

2. Solutions of Strong Acid and Weak Acid (or Strong Base and Weak Base)
  • Since the strong acid is dissociated completely and the weak acid almost not: [H^+]{strong acid} >> [H^+]{weak acid}

  • Approximation: [H^+] = [H^+]_{strong acid}

  • Example: 0.010 M HCl and 0.010 M HOAc (pKa = 4.75).

    • HCl = strong acid, HOAc = weak acid

    • [H^+] = [H^+]_{HCl} = 0.01 M

    • pH = -\log[H^+] = 2.00

    • Formal concentrations: 0.010 M HCl, 0.010 M HOAc

    • Actual concentrations: [H^+] = 0.010 M, [Cl^-] = 0.010 M, [HOAc] = 0.010 M

3. Solutions of Mixtures of Acids and Bases
  • pH determination in two steps:

    1. Mixing and ending reactions (stoichiometric calculations using moles).

    2. Equilibrium calculations (hydrolysis equilibrium, [H+] calculation using concentrations).

Step 1
  • React actual contributed acids and bases stoichiometrically with each other (ending reactions).

Step 2
  • Write the hydrolysis equilibrium in water for the resulting end product(s) and calculate the [H+] with the associated equilibrium constant.
    Example: 10 mL 0.20 M NH3, 20 mL 0.20 M NH4NO3, 30 mL 0.10 M HCl, 40 mL 0.05 M NaOH are mixed. Given pKa(NH4^+) = 9.24

  • Identify Brönsted-acids and bases and their amounts:

    • NH3 (weak base): 10 mL x 0.20 mol/L = 2.0 mmol

    • NH4+ (weak acid): 20 mL x 0.20 mol/L = 4.0 mmol

    • H+ (strong acid): 30 mL x 0.10 mol/L = 3.0 mmol

    • OH- (strong base): 40 mL x 0.05 mol/L = 2.0 mmol

  • Ending reactions (strong with strong > strong with weak > weak with weak):

    • a) H^+(aq) + OH^-(aq) \rightarrow H_2O

      • Initial: 3.0 mmol 2.0 mmol

      • Reaction: -2.0 mmol -2.0 mmol

      • Remains: 1.0 mmol -

    • b) NH3(aq) + H^+(aq) \rightarrow NH4^+(aq)

      • I: 2.0 mmol 1.0 mmol 4.0 mmol

      • C: -1.0 mmol -1.0 mmol +1.0 mmol

      • E: 1.0 mmol - 5.0 mmol

  • In the 100 mL solution, there is:

    • 1.0 mmol NH3 [NH_3] = 0.010 M

    • 5.0 mmol NH4+ [NH_4^+] = 0.050 M

  • This generates a buffer.

Step 2: Equilibrium Calculation
  • Possible equilibrium: NH4^+(aq) \rightleftharpoons NH3(aq) + H^+(aq)

  • Buffer: 0.050 M 0.010 M ???

    • Ka = \frac{[NH3][H^+]}{[NH_4^+]}

    • pH = pKa + \log \frac{[NH3]}{[NH_4^+]} = 9.24 + \log \frac{0.01 M}{0.05 M} = 8.54

  • Conclusion: 1.0 mmol NH3, 5.0 mmol NH4+, 4.0 mmol NO3-, 3.0 mmol Cl-, 2 mmol Na+ in 100 mL solution.

Example 2

Solution which are mixed together: 10 mL 0,30 M NH3 20 mL 0,30 M NH4Cl 30 mL 0,10 M HCl 40 mL 0,10 M HOAc
What is the final pH of the mixture?
step 1:

  • Which Brönsted-acids and bases, and how much mols are present? NH3 : weak base: 10 mL x 0,30 mol.L-1 = 3,0 mmol NH4 +: weak acid: 20 mL x 0,30 mol.L-1 = 6,0 mmol H+: strong acid: 30 mL x 0,10 mol.L-1 = 3,0 mmol HOAc: weak acid: 40 mL x 0,10 mol.L-1 = 4,0 mmol

    • Ending reactions (sequence: strong with strong > strong with weak > weak with weak):

a) NH3(aq) + H+(aq) ® NH4 +(aq)
I 3,0 3,0 6,0 (mmol)
C -3,0 -3,0 +3,0 (mmol)
E - - 9,0 (mmol)
All base is used rest: unreacted acid HOAc and NH4 +
In this 100 mL solution is actually present :
9,0 mmol NH4 + (weak acid) (Ka=10-9,24)
4,0 mmol HOAc (weak acid) (Ka=10-4,74) ®The pH of the solution is only determined by the strongest acid!
Stronger acid!
[HOAc] = 4,0 mmol 100 mL = 0,04 M

step 2 : equilibrium in water :
HOAc(aq) OAc-(aq) + H+(aq)
formal 0,04 M (in mol.L-1)
equilibrium (0,04 - x) M x M x M
K a = 10-4,74 = [H+] [OAc -] [HOAc] = x 2 0,04 - x = 10-4,74 or x 2 + 10 -4,74 x - 0,04.10 -4,74 = 0
So x = [H+] = 8,44 x 10-4 and pH = 3,07
Formal : 3,0 mmol NH3 6,0 mmol NH4 + (and Cl-) 3,0 mmol H + (and Cl-) 4,0 mmol HOAc in 100 mL solution
Actually present: 9,0 mmol NH4 + (and NO3 -) 9,0 mmol Cl- 4,0 mmol HOAc in 100 mL solution
Conclusion