physics chapter 7
Simple harmonic motion
=> back and forth motion
oscillators follows a particular consistent pattern
equilibrium- jämviktsläge
a ball attached to a spring, attached to a wall, laying horizontally
=> two turning points - where it is not moving
turning point 1 - when the spring is compressed all the way
turning point 2 - when the spring is stretched all the way
amplitude - the distance between the equilibrium and the turning point
all of the energy will be potential energy
E= (k/2)xA^2 → moment of turning point → potential energy
E=(m/2)xV^2→ equilibrium point → kinetic energy
The balls maximum velocity is:
V=+- A(k/m)^1/2
T= 2pi(m/k)^1/2
-f= 1/(2pi)(k/m)^1/2
For an object in simple harmonic motion, the graph of its position versus time is a wave
Resonance can increase the amplitude of an oscillation by applying force at just the right frequency
resonance - energiöverföring från från ett system till ett annat
Simple harmonic motion
=> back and forth motion
oscillators follows a particular consistent pattern
equilibrium- jämviktsläge
a ball attached to a spring, attached to a wall, laying horizontally
=> two turning points - where it is not moving
turning point 1 - when the spring is compressed all the way
turning point 2 - when the spring is stretched all the way
amplitude - the distance between the equilibrium and the turning point
all of the energy will be potential energy
E= (k/2)xA^2 → moment of turning point → potential energy
E=(m/2)xV^2→ equilibrium point → kinetic energy
The balls maximum velocity is:
V=+- A(k/m)^1/2
T= 2pi(m/k)^1/2
-f= 1/(2pi)(k/m)^1/2
For an object in simple harmonic motion, the graph of its position versus time is a wave
Resonance can increase the amplitude of an oscillation by applying force at just the right frequency
resonance - energiöverföring från från ett system till ett annat