Chapter 14 Organic chemistry
Alkanes are hydrocarbons that contain only single covalent bonds within their molecules.
Alkane Nomenclature: The naming of alkanes is based on choosing the longest carbon chain in the structural formula, then naming
Compounds that have the same molecular formulas but different structural formulas are called isomers. With hydrocarbons, this applies to a different arrangement of the carbon atoms. Isomers such as these are called structural isomers.
Carbon has the ability to bond to itself in long and complex chains. These large molecules, called macromolecules, may have molecular masses in the millions.
They are large, complex molecules, but most are composed of repeating units called monomers.
Nature of reactants
The temperature
The concentration of reactants
The physical state of reactants
Catalysts
k is the rate constant—a constant for each chemical reaction at a given temperature. The exponents m and n, called the orders of reaction
The rate of reaction may depend upon reactant concentration, product concentration, and
temperature.
The rate of reaction may be measured in a variety of ways, including taking the slope
of the concentration versus time plot for the reaction.
INTEGRATED RATE LAWS
only cases in which instantaneous data are used in the rate expression have been shown. These expressions allow us to answer questions concerning the speed of the reaction at a particular moment, but not questions about how long it might take to use up a certain reactant, etc.
If changes in the concentration of reactants or products over time are taken into account, as in the integrated rate laws, these questions can be answered.
The Arrhenius equation is most commonly used to calculate the activation energy of a reaction.
The Arrhenius equation has the form: k = Ae-Ea /RT where k is the rate constant, A is a term called the frequency factor that accounts for molecular orientation, e is the natural logarithm base, R is the universal gas constant 8.314 J mol K-1, T is the Kelvin temperature, and Ea is the activation energy,
A + B → C
C + B → D
D → E + F
If you add together the three equations above, you will get the overall equation A + 2B →E + F. C and D are called reaction intermediates, chemical species that are produced and consumed during the reaction, but that do not appear in the overall reaction.
T is the Kelvin temperature, and Ea is the activation energy, the minimum amount of energy that is needed to initiate or start a chemical reaction.
Many reactions proceed from reactants to products through a sequence of reactions. This sequence of reactions is called the reaction mechanism.
Homogeneous catalysts are catalysts that are in the same phase or state of matter as the reactants. They provide an alternative reaction pathway (a mechanism) with lower activation energy.
The decomposition of hydrogen peroxide is a slow, one-step reaction, especially if the solution is kept cool and in a dark bottle:
2 H2O2 → 2 H2O + O2
However, if ferric ions are added, the reaction speeds up tremendously. The proposed reaction sequence for this new reaction is:
2 Fe3^+ + H2O2 → 2 Fe2^+ + O2 + 2 H^+
2 Fe2^+ + H2O2 + 2 H^+ → 2 Fe3^+ + 2 H2
A heterogeneous catalyst is in a different phase or state of matter from the reactants.
Most commonly, the catalyst is a solid and the reactants are liquids or gases.
These catalysts lower the activation energy for the reaction by providing a surface for the reaction, and also by providing a better orientation of one reactant so its reactive site is more easily hit by the other reactant
Alkanes are hydrocarbons that contain only single covalent bonds within their molecules.
Alkane Nomenclature: The naming of alkanes is based on choosing the longest carbon chain in the structural formula, then naming
Compounds that have the same molecular formulas but different structural formulas are called isomers. With hydrocarbons, this applies to a different arrangement of the carbon atoms. Isomers such as these are called structural isomers.
Carbon has the ability to bond to itself in long and complex chains. These large molecules, called macromolecules, may have molecular masses in the millions.
They are large, complex molecules, but most are composed of repeating units called monomers.
Nature of reactants
The temperature
The concentration of reactants
The physical state of reactants
Catalysts
k is the rate constant—a constant for each chemical reaction at a given temperature. The exponents m and n, called the orders of reaction
The rate of reaction may depend upon reactant concentration, product concentration, and
temperature.
The rate of reaction may be measured in a variety of ways, including taking the slope
of the concentration versus time plot for the reaction.
INTEGRATED RATE LAWS
only cases in which instantaneous data are used in the rate expression have been shown. These expressions allow us to answer questions concerning the speed of the reaction at a particular moment, but not questions about how long it might take to use up a certain reactant, etc.
If changes in the concentration of reactants or products over time are taken into account, as in the integrated rate laws, these questions can be answered.
The Arrhenius equation is most commonly used to calculate the activation energy of a reaction.
The Arrhenius equation has the form: k = Ae-Ea /RT where k is the rate constant, A is a term called the frequency factor that accounts for molecular orientation, e is the natural logarithm base, R is the universal gas constant 8.314 J mol K-1, T is the Kelvin temperature, and Ea is the activation energy,
A + B → C
C + B → D
D → E + F
If you add together the three equations above, you will get the overall equation A + 2B →E + F. C and D are called reaction intermediates, chemical species that are produced and consumed during the reaction, but that do not appear in the overall reaction.
T is the Kelvin temperature, and Ea is the activation energy, the minimum amount of energy that is needed to initiate or start a chemical reaction.
Many reactions proceed from reactants to products through a sequence of reactions. This sequence of reactions is called the reaction mechanism.
Homogeneous catalysts are catalysts that are in the same phase or state of matter as the reactants. They provide an alternative reaction pathway (a mechanism) with lower activation energy.
The decomposition of hydrogen peroxide is a slow, one-step reaction, especially if the solution is kept cool and in a dark bottle:
2 H2O2 → 2 H2O + O2
However, if ferric ions are added, the reaction speeds up tremendously. The proposed reaction sequence for this new reaction is:
2 Fe3^+ + H2O2 → 2 Fe2^+ + O2 + 2 H^+
2 Fe2^+ + H2O2 + 2 H^+ → 2 Fe3^+ + 2 H2
A heterogeneous catalyst is in a different phase or state of matter from the reactants.
Most commonly, the catalyst is a solid and the reactants are liquids or gases.
These catalysts lower the activation energy for the reaction by providing a surface for the reaction, and also by providing a better orientation of one reactant so its reactive site is more easily hit by the other reactant