Chapter 25 – Fluid, Electrolytes & Acid-Base Balance

Body‐Fluid Distribution

  • Total body water (TBW) ≈ 60\% of adult body mass (≈ 42\,\text{L} in a 70\,\text{kg} male)
    • Intracellular fluid (ICF) ≈ 2\/3 of TBW (≈ 28\,\text{L})
    • Extracellular fluid (ECF) ≈ 1\/3 of TBW (≈ 14\,\text{L})
    • Interstitial fluid (ISF) ≈ 75\% of ECF (≈ 10.5\,\text{L})
    • Plasma ≈ 25\% of ECF (≈ 3.5\,\text{L})

Factors influencing % body fluid

  • Age: newborns \rightarrow 75\% TBW; elderly \rightarrow ↓ TBW (≈ 45\%) due to ↓ muscle, ↑ adipose
  • Sex: males > females (testosterone maintains more skeletal muscle; estrogen promotes adipose)
  • Body composition: skeletal muscle is \approx 75\% water; adipose is \approx 20\% water. ↑ adipose \rightarrow ↓ % TBW.
  • Body size: larger surface area to volume (infants) \rightarrow greater insensible loss

Significance of % body‐fluid for fluid balance

  • High TBW buffers rapid osmotic changes.
  • Low TBW (elderly, obese) predisposes to dehydration, electrolyte shifts, drug toxicity.

Comparing ICF & ECF composition

  • ICF dominant cations/anions
    • \text{K}^+ (≈ 140\,\text{mEq·L}^{-1})
    • \text{Mg}^{2+}, \text{PO}_4^{3-}, negatively charged proteins
  • ECF dominant cations/anions
    • \text{Na}^+ (≈ 142\,\text{mEq·L}^{-1}), \text{Ca}^{2+}
    • \text{Cl}^-, \text{HCO}_3^-
  • Osmolarities are equal (≈ 300\,\text{mOsm·kg}^{-1}); only the ionic makeup differs.

Fluid movement between compartments

  • Governed by Starling forces & osmosis
    • \text{Hydrostatic}\;P pushes fluid out of plasma \rightarrow ISF.
    • \text{Colloid osmotic}\;P (proteins) pulls fluid into plasma.
    • Osmotic gradient produced by electrolyte or solute shifts drives water across cell membranes via aquaporins until equilibrium (iso‐osmotic state).

Effect of added adipose tissue

  • ↑ adipose mass \rightarrow ↓ % TBW (decrease in denominator water portion); absolute water may stay constant but proportion falls.

Dehydration—net water shift

  • Loss of hypotonic fluid from plasma raises ECF osmolarity \uparrow \rightarrow water moves from ICF to ECF (plasma) causing cell shrinkage.

Fluid Balance

Definition

  • Fluid balance: dynamic equilibrium where fluid intake = fluid output, and water is properly distributed among compartments.

Fluid intake sources

  • Preformed water (≈ 2300\,\text{mL·day}^{-1}) from beverages & food
  • Metabolic water (≈ 200\,\text{mL·day}^{-1}) produced by cellular respiration: \text{C}6\text{H}{12}\text{O}6 + 6\text{O}2 \rightarrow 6\text{CO}2 + 6\text{H}2\text{O} + \text{ATP}

Water loss categories

  • Sensible (measurable): urine, feces, sweat
  • Insensible (unnoticed): evaporation via skin & lungs
  • Obligatory: minimal urine (≈ 0.5\,\text{L}), fecal & insensible losses—independent of hydration status
  • Facultative: variable urine output regulated by hormones (ADH, aldosterone, ANP)

Fluid output pathways

  • Kidneys (urine) – ONLY route finely regulated
  • Skin (sweat/evaporation)
  • Lungs (humidified air)
  • GI tract (feces)

Thirst center activation (hypothalamus)

  • ↑ blood osmolarity (osmoreceptors shrink)
  • ↓ blood pressure or volume (baroreceptors, RAAS \rightarrow angiotensin II)
  • Dry mouth (↓ saliva)

Inhibition of thirst

  • ↑ saliva, moist oral mucosa
  • Stretch of stomach/SI (distension)
  • ↓ osmolarity, ↑ BP/volume

Fluid Imbalances

TypeCauseTBW changeOsmolarity changeFluid shift
Volume depletionhemorrhage, burns, vomitingnonenone
Volume excessrenal failure, ADH hyposecretionnonenone
Dehydrationprofuse sweating, diabetes insipidus, alcoholICF \rightarrow ECF
Hypotonic hydration (water intoxication)excessive water or ADH hypersecretionECF \rightarrow ICF (cerebral edema)
Fluid sequestrationedema, ascites, pleural effusion, pericardial effusionnormal TBW, but localized accumulationvariabletrapped fluid unavailable for circulation

Electrolyte Concepts

Nonelectrolyte vs Electrolyte

  • Nonelectrolyte: covalent, do not dissociate (e.g., glucose, urea) \rightarrow no electrical charge.
  • Electrolyte: dissociate into ions (e.g., \text{NaCl} \rightarrow \text{Na}^+ + \text{Cl}^-); conduct electricity; create osmotic gradients.

Roles in fluid balance

  • Maintain osmolarity & electrical neutrality.
  • Facilitate secondary active transport, neuromuscular excitability, secretion, acid–base buffering.

Six major electrolytes (besides \text{H}^+, \text{HCO}_3^-)

  1. \text{Na}^+
  2. \text{K}^+
  3. \text{Cl}^-
  4. \text{Ca}^{2+}
  5. \text{PO}4^{3-} (as \text{HPO}4^{2-}, \text{H2PO}4^-)
  6. \text{Mg}^{2+}

Sodium (Na$^+$)

  • Primary ECF cation; chief determinant of ECF osmolarity & volume.
  • Functions: neuromuscular excitability, cotransport (glucose/aa), acid–base (Na/H exchanger).
  • Regulation: RAAS & ANP (renal reabsorption/excretion); ADH (water follows Na$^+$).

Potassium (K$^+$)

  • Primary ICF cation; crucial for resting membrane potential.
  • Distribution influenced by
    • Insulin & epinephrine (stimulate Na/K ATPase \rightarrow K$^+$ into cells)
    • Aldosterone (increases secretion into filtrate)
    • pH: ↓ pH (acidosis) \rightarrow H$^+$ moves into cells, K$^+$ moves out (hyperkalemia)

Net K$^+$ movement when pH ↓

  • Direction: out of cells into ECF to buffer excess H$^+$.
  • Why: exchange on H$^+$–K$^+$ antiporters maintains electroneutrality.

Chloride (Cl$^-$)

  • Major ECF anion; forms HCl in stomach; follows Na$^+$.

Calcium (Ca$^{2+}$)

  • 99\% in bone/teeth (hydroxyapatite); ECF \approx 2.2–2.6\,\text{mM}.
  • Functions: muscle contraction, NT release, blood clotting.
  • Regulation: PTH ↑ Ca$^{2+}$, calcitriol ↑ absorption, calcitonin ↓.

Phosphate (PO$^{3-}_4$)

  • ICF anion; bone mineral; ATP, nucleic acids.
  • Buffer in urine & ICF.
  • Regulation: PTH ↑ excretion (internalization from bone); calcitriol ↑ absorption.

Magnesium (Mg$^{2+}$)

  • ICF cation; cofactor >300 enzymes, stabilizes ATP.
  • Regulation: renal reabsorption (loop of Henle) altered by PTH, calcitonin.

Hormonal Control of Fluid & Electrolytes

Renin–Angiotensin–Aldosterone System (RAAS)

Triggering angiotensin II formation

  • ↓ BP (granular cells \rightarrow renin)
  • ↓ NaCl sensed by macula densa
  • Sympathetic stimulation (β$_1$ on JG cells)
    \text{Angiotensinogen} \xrightarrow[\text{renin}]{} \text{Angiotensin I} \xrightarrow[\text{ACE}]{} \text{Angiotensin II}

Four primary effects of Ang II

  1. Systemic vasoconstriction (↑ TPR, ↑ BP)
  2. Stimulate thirst center & ADH release
  3. Stimulate aldosterone secretion (zona glomerulosa)
  4. Constrict efferent arterioles (↑ GFR maintenance)

Antidiuretic Hormone (ADH / Vasopressin)

Release stimuli

  • ↑ ECF osmolarity (osmoreceptors)
  • ↓ BP/volume via Ang II

Three actions

  1. Insert aquaporin‐2 in collecting ducts (↑ water reabsorption)
  2. ↑ systemic vasoconstriction (at high [ ])
  3. Stimulate thirst center

Aldosterone

Stimuli (three key)

  1. ↑ K$^+$ in plasma
  2. Ang II
  3. ↓ Na$^+$ or ↓ BP

Renal effects

  • Up‐regulates ENaC & Na/K ATPase in late DCT & CD \rightarrow Na$^+$, water reabsorption; K$^+$ & H$^+$ secretion.

Atrial Natriuretic Peptide (ANP)

  • Original stimulus: atrial stretch from ↑ venous return / BP.
  • Actions (3)
    1. Dilate afferent arteriole (↑ GFR) & inhibit renin
    2. Inhibit aldosterone & ADH release
    3. Increase Na$^+$ & water excretion (natriuresis/diuresis)
  • Opposes effects of Ang II, ADH, aldosterone.

Comparison: ADH vs Ang II

  • Both ↑ BP & thirst.
  • ADH affects water only (↑ osmolarity ↓); Ang II affects both Na$^+$ and water plus potent vasoconstriction.

Acid–Base Physiology

Acid categories

  1. Volatile acid: \text{H}2\text{CO}3 derived from \text{CO}_2 (excreted via lungs).
  2. Fixed (non‐volatile) acids: produced by metabolism (lactic, keto, phosphoric, sulfuric) \rightarrow excreted by kidneys.

Sources of fixed acid

  • Lactic acid (anaerobic respiration)
  • Ketoacids (β‐oxidation, diabetes, starvation)
  • Phosphoric & sulfuric acids (protein catabolism)
  • Uric acid (purine breakdown)

Renal handling of H$^+$ & HCO$_3^-$

Excess H$^+$ (acidosis)

  • Secrete H$^+$ (via H$^+$‐ATPase, H/K antiporter)
  • Reclaim filtered HCO$_3^-$
  • Generate new HCO$3^-$ via glutamine \rightarrow \text{NH}4^+ buffering.

Decreased H$^+$ (alkalosis)

  • Decrease H$^+$ secretion
  • Excrete excess HCO$_3^-$.

Respiratory influence on pH

  • \text{CO}2 + \text{H}2\text{O} \leftrightarrow \text{H}2\text{CO}3 \leftrightarrow \text{H}^+ + \text{HCO}_3^-
  • ↑ ventilation \rightarrow ↓ \text{CO}_2 ↓ H$^+$ ↑ pH.
  • ↓ ventilation \rightarrow ↑ \text{CO}_2 ↑ H$^+$ ↓ pH.

Chemical Buffer Systems (first line)

  1. Protein buffer (ICF & blood): side chains of amino acids
    • Acidic pH: \text{NH}2 binds H$^+$ \rightarrow \text{NH}3^+
    • Basic pH: \text{COOH} \rightarrow \text{COO}^- + \text{H}^+
  2. Phosphate buffer (ICF & urine):
    \text{H}2\text{PO}4^- \leftrightarrow \text{HPO}_4^{2-} + \text{H}^+
  3. Bicarbonate buffer (ECF):
    \text{HCO}3^- + \text{H}^+ \leftrightarrow \text{H}2\text{CO}3 \leftrightarrow \text{CO}2 + \text{H}_2\text{O}

Acid–Base Disturbances

Terminology

  • Disturbance: initial shift in pH (respiratory or metabolic).
  • Compensation: physiological response opposing disturbance (respiratory ↔ renal).
  • Imbalance: persists despite max compensation.

Respiratory Disturbances

  • Respiratory acidosis: ↑ \text{CO}_2 (hypoventilation, airway obstruction, COPD, opiates, brainstem injury). Infants predisposed due to narrow airways, weak muscles.
  • Respiratory alkalosis: ↓ \text{CO}_2 (hyperventilation: anxiety, high altitude, fever, aspirin early).

Metabolic Disturbances

  • Metabolic acidosis: ↓ HCO$_3^-$ or ↑ fixed acids (diabetic ketoacidosis, lactic acidosis, diarrhea, renal failure).
  • Metabolic alkalosis: ↑ HCO$_3^-$ or ↓ H$^+$ (vomiting, diuretics, antacid overdose).

Compensation pathways

  • Respiratory compensation (minutes): adjust ventilation to alter \text{CO}_2.
  • Renal compensation (hours–days): adjust H$^+$ secretion & HCO$_3^-$ reabsorption.

Hyperventilation effects

  • ↓ blood \text{CO}_2
  • ↓ H$^+$ (alkalemia)
  • ↑ pH

Compensated vs Uncompensated

  • Compensated: pH normalized, but both variables (HCO$3^-$ & \text{CO}2) are deviant.
  • Uncompensated: pH abnormal, no secondary change.

Key clinical Q&A

  • CO$2$‐derived acid: carbonic acid (\text{H}2\text{CO}_3).
  • Airway obstruction \rightarrow respiratory acidosis.
  • Vomiting \rightarrow metabolic alkalosis.

Summary of Key Numbers & Equations

  • Normal arterial pH: 7.35–7.45
  • pKa (HCO$3^-$/CO$2$) \approx 6.1
  • Henderson–Hasselbalch: \text{pH} = 6.1 + \log \frac{[\text{HCO}3^-]}{0.03\times P{\text{CO}_2}}
  • Normal plasma [Na$^+$]: 135–145\,\text{mEq·L}^{-1}; [K$^+$]: 3.5–5.0\,\text{mEq·L}^{-1}; Osmolarity: 275–295\,\text{mOsm·kg}^{-1}

These notes encompass all listed learning objectives, integrating definitions, mechanisms, numerical values, and clinical correlations necessary for mastering fluid, electrolyte, and acid–base physiology.