TRIGONOMETRIC IDENTITIES
BASIC TRIG IDENTITIES
Pythagorean
sin²x + cos²x = 1
1 + tan²x = sec²x
1 + cot²x = csc²x
Reciprocal
sin x =
1/csc x
cos x =
1/sec x
tan x =
1/cot x
csc x =
1/sin x
sec x =
1/cos x
cot x =
1/tan x
Co-function
sin π/2 - x =
cos x
cos π/2 - x =
sin x
tan π/2 - x =
cot x
cot π/2 -x =
tan x
sec π/2 - x =
csc x
csc π/2 - x =
sec x
Even-odd
sin (-x) = -sinx
cos (-x) = cos x
tan (-x) = -tanx
sec (-x) = sec x
cot (-x) = -cotx
csc (-x) = -cscx
Double-angle
sin 2x =
2sin x cos x
cos 2x =
cos²x - sin²x
2cos²x - 1
1 - 2sin²x
tan 2x =
2tanx/1-tan²x
DERIVATIVES
d/dx sin x =
cos x
d/dx cos x =
-sinx
d/dx tan x =
sec²x
d/dx cot x =
-csc²x
d/dx sec x =
sec x tan x
d/dx csc x =
-csc x cot x
INTEGRALS
∫ sin x dx =
-cos x + C
∫ cos x dx =
sin x + C
∫ tan x dx =
ln (sec x) + C
∫ cot x dx =
ln (sin x) + C
∫ sec x dx =
ln (sec x + tan x) +C
∫ csc x dx =
ln (csc x - cot x) + C
POWER REDUCING IDENTITY
sin²x =
1 - cos 2x/2
cos²x =
1 + cos 2x/2
tan²x =
1 - cos 2x/1 + cos 2x
TANGENT AND COTANGENT
tan x =
sin x/cos x
cot x =
cos x/sin x